38 research outputs found

    Computer-supported laboratory for production-oriented electrotechnical systems

    Get PDF
    At the electrical engineering department of the K.U.Leuven an education research project was started in October 1997. The target is to develop a powerful environment to teach students to solve practice-oriented problems as they will encounter them in industry furtheron in their career. In order to give a wide use to the developed environment, a close collaboration has been established with three polytechnical engineering institutes. Self-dependence has to be stimulated by creating possibilities for real “hands-on experience”. Such an educational environment implicates time-problems, high investment costs and last but not least safety restrictions. The project contributes to the solution of these problems by using simulation- and softwareenvironments, without loosing the real hands-on feeling

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel's gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e. g., hanatoxin). Therefore, polyether toxins open new opportunities in structure-function relationship studies in Kv channels and in drug design to modulate channel function

    Compound heterozygous SCN5A mutations in severe sodium channelopathy with Brugada syndrome : a case report

    Get PDF
    Aims:Brugada syndrome (BrS) is an inherited cardiac arrhythmia with an increased risk for sudden cardiac death (SCD). About 20% of BrS cases are explained by mutations in theSCN5Agene, encoding the main cardiac sodium Na(v)1.5 channel. Here we present a severe case of cardiac sodium channelopathy with BrS caused bySCN5Acompound heterozygous mutations. We performed a genetic analysis ofSCN5Ain a male proband who collapsed during cycling at the age of 2 years. Because of atrial standstill, he received a pacemaker, and at the age of 3 years, he experienced a collapse anew with left-sided brain stroke. A later ECG taken during a fever unmasked a characteristic BrS type-1 pattern. The functional effect of the detected genetic variants was investigated. Methods and Results:Next-generation sequencing allowed the detection of twoSCN5Avariants intrans: c.4813+3_4813+6dupGGGT-a Belgian founder mutation-and c.4711 T>C, p.Phe1571Leu. A familial segregation analysis showed the presence of the founder mutation in the proband's affected father and paternal aunt and thede novooccurrence of the p.Phe1571Leu. The functional effect of the founder mutation was previously described as a loss-of-function. We performed a functional analysis of the p.Phe571Leu variant in HEK293 cells alone or co-expressed with the beta(1)-subunit. Compared to theSCN5Awild type, p.Phe1571Leu displayed a hyperpolarizing shift in the voltage dependence of inactivation (loss-of-function), while the activation parameters were unaffected. Using the peptide toxin nemertide alpha-1, the variant's loss-of-function effect could be restored due to a toxin-dependent reduction of channel inactivation. Conclusion:This is the first report providing support for the pathogenicity of the p.Phe1571LeuSCN5Avariant which, together with the c.4813+3_4813+6dupGGGT founder mutation, explains the severity of the phenotype of cardiac sodium channelopathy with BrS in the presented case

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K(+) permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K(+) permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function

    Photofragmentation laser-induced fluorescence of ozone : an in situ tool for precise mapping of ozone concentration in non-thermal plasmas

    No full text
    The absolute spatially resolved concentration of ozone has been determined in the near afterglow of a novel type of atmospheric multi-hollow barrier discharge using photofragmentation laser-induced fluorescence. The method consists of two steps: (i) photodissociation of O-3 to O(P-3) and O-2(X-3 Sigma(-)(g)) with considerable vibrational excitation; (ii) predissociation laser-induced fluorescence of the molecular fragment via the O-2 (B-3 Sigma(-)(u), v' = 0 <- X-3 Sigma(-)(g), v '' = 6) transition. Both processes happen during the same laser pulse, requiring the same excitation wavelength (approximate to 248 nm). The fluorescence signal has been calibrated by infrared absorption. The method allows in situ observation before the afterglow chemistry significantly affects the O-3 concentration, and is capable of revealing inhomogeneous ozone distributions in the reactor. (C) 2019 The Japan Society of Applied Physic
    corecore