6 research outputs found

    Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals

    Get PDF
    CITATION: Manngo, P. M. et al. 2019. Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. Journal of Infection, 79(3):228-235, doi:10.1016/j.jinf.2019.07.007.The original publication is available at https://www.journalofinfection.comBackground: There is an urgent need for new tools for the diagnosis of TB. We evaluated the usefulness recently described host biomarkers in supernatants from the newest generation of the QuantiFERON test (QuantiFERON Plus) as tools for the diagnosis of active TB. Methods: We recruited individuals presenting at primary health care clinics in Cape Town, South Africa with symptoms requiring investigation for TB disease, prior to the establishment of a clinical diagnosis. Participants were later classified as TB or other respiratory diseases (ORD) based on the results of clinical and laboratory tests. Using a multiplex platform, we evaluated the concentrations of 37 host biomarkers in QuantiFERON Plus supernatants from study participants as tools for the diagnosis of TB. Results: Out of 120 study participants, 35(29.2%) were diagnosed with active TB, 69(57.5%) with ORD whereas 16(13.3%) were excluded. 14(11.6%) of the study participants were HIV infected. Although individ- ual host markers showed potential as diagnostic candidates, the main finding of the study was the identi- fication of a six-marker biosignature in unstimulated supernatants (Apo-ACIII, CXCL1, CXCL9, CCL8, CCL-1, CD56) which diagnosed TB with sensitivity and specificity of 73.9%(95% CI; 51.6–87.8) and 87.6%(95% CI; 77.2–94.5), respectively, after leave-one-out cross validation. Combinations between TB-antigen specific biomarkers also showed potential (sensitivity of 77.3% and specificity of 69.2%, respectively), with multi- ple biomarkers being significantly different between TB patients, Quantiferon Plus Positive and Quantif- eron Plus negative individuals with ORD, regardless of HIV status. Conclusions: Biomarkers detected in QuantiFERON Plus supernatants may contribute to adjunctive diag- nosis of TB.EDCTP , grant no: DRIA2014-311National Research FoundationICIDR (grant no: 5U01IA115619)Publisher's versio

    Potential of host serum protein biomarkers in the diagnosis of tuberculous meningitis in children

    Get PDF
    CITATION: Manyelo, C. M., et al. 2019. Potential of host serum protein biomarkers in the diagnosis of tuberculous meningitis in children. Frontiers in Pediatrics, 7:376, doi:10.3389/fped.2019.00376.The original publication is available at https://www.frontiersin.orgPublication of this article was funded by the Stellenbosch University Open Access Fund.Background: Tuberculous meningitis (TBM) is the most severe form of tuberculosis and results in high morbidity and mortality in children. Diagnostic delay contributes to the poor outcome. There is an urgent need for new tools for the rapid diagnosis of TBM, especially in children. Methods: We collected serum samples from children in whom TBM was suspected at a tertiary hospital in Cape Town, South Africa. Children were subsequently classified as having TBM or no TBM using a published uniform research case-definition. Using a multiplex cytokine array platform, we investigated the concentrations of serum biomarkers comprising biomarkers that were previously found to be of value in the diagnosis of adult pulmonary TB (CRP, SAA, CFH, IFN-γ, IP-10, Apo-AI, and transthyretin) plus other potentially useful host biomarkers as diagnostic candidates for TBM. Findings: Out of 47 children included in the study, 23 (48.9%) had a final diagnosis of TBM and six were HIV infected. A modified version of the adult 7-marker biosignature in which transthyretin was replaced by NCAM1, diagnosed TBM in children with AUC of 0.80 (95% CI, 0.67–0.92), sensitivity of 73.9% (95% CI, 51.6–89.8%) and specificity of 66.7% (95% CI, 44.7–84.4%), with the other six proteins in the signature (CRP, IFN-γ, IP-10, CFH, Apo-A1, and SAA) only achieving and AUC of 0.75 (95% CI, 0.61–0.90) when used in combination. A new childhood TBM specific 3-marker biosignature (adipsin, Aβ42, and IL-10) showed potential in the diagnosis of TBM, with AUC of 0.84 (95% CI, 0.73–0.96), sensitivity of 82.6% (95 CI, 61.2–95.0%) and specificity of 75.0% (95% CI, 53.3–90.2%) after leave-one-out cross validation. Conclusion: A previously described adult 7-marker serum protein biosignature showed potential in the diagnosis of TBM in children. However, a smaller childhood TBM-specific 3-marker signature demonstrated improved performance characteristics. Our data indicates that blood-based biomarkers may be useful in the diagnosis of childhood TBM and requires further validation in larger cohort studies.https://www.frontiersin.org/articles/10.3389/fped.2019.00376/fullPublisher's versionAuthors retain copyrigh

    A Plasma 5-Marker Host Biosignature Identifies Tuberculosis in High and Low Endemic Countries

    No full text
    Background: Several host inflammatory markers have been proposed as biomarkers for diagnosis and treatment response in Tuberculosis (TB), but few studies compare their utility in different demographic, ethnic, and TB endemic settings. Methods: Fifty-four host biomarkers were evaluated in plasma samples obtained from presumed TB cases recruited at the Oslo University Hospital in Norway, and a health center in Cape Town, South Africa. Based on clinical and laboratory assessments, participants were classified as having TB or other respiratory diseases (ORD). The concentrations of biomarkers were analyzed using the Luminex multiplex platform. Results: Out of 185 study participants from both study sites, 107 (58%) had TB, and 78 (42%) ORD. Multiple host markers showed diagnostic potential in both the Norwegian and South African cohorts, with I-309 as the most accurate single marker irrespective of geographical setting. Although study site-specific biosignatures had high accuracy for TB, a site-independent 5-marker biosignature (G-CSF, C3b/iC3b, procalcitonin, IP-10, PDGF-BB) was identified diagnosing TB with a sensitivity of 72.7% (95% CI, 49.8–82.3) and specificity of 90.5% (95% CI, 69.6–98.8) irrespective of geographical site. Conclusion: A 5-marker host plasma biosignature has diagnostic potential for TB disease irrespective of TB setting and should be further explored in larger cohorts

    Application of cerebrospinal fluid host protein biosignatures in the diagnosis of tuberculous meningitis in children from a high burden setting

    Get PDF
    CITATION: Manyelo, C. M., et al. 2019. Application of cerebrospinal fluid host protein biosignatures in the diagnosis of tuberculous meningitis in children from a high burden setting. Mediators of Inflammation, 2019 (Article ID 7582948), doi:10.1155/2019/7582948.The original publication is available at https://www.hindawi.comPublication of this article was funded by the Stellenbosch University Open Access FundBackground. The diagnosis of tuberculous meningitis (TBM) especially in children is challenging. New tests are urgently needed for the diagnosis of the disease, especially in resource-limited settings. Methods. We collected cerebrospinal fluid (CSF) samples from children presenting with symptoms requiring investigation for meningitis at a tertiary hospital in Cape Town, South Africa. Children were later classified as TBM or no TBM using published case definitions. Using a multiplex platform, we investigated the concentrations of biomarkers comprising a previously established 3-marker biosignature (VEGF, IL-13, and LL-37) and other potentially useful host biomarkers as diagnostic candidates for TBM. Findings. Out of 47 children, age, 3 months to 13 years, 23 were diagnosed with TBM and six (16%) were HIV-infected. We validated the previously identified CSF biosignature (sensitivity of 95.7% (95% CI, 79.0-99.2%) and specificity of 37.5% (95% CI, 21.2-57.3%)). However, substitution of IL-13 and LL-37 with IFN-γ and MPO, respectively, resulted in improved accuracy (area under the ROC curve (AUC) = 0 97, 95% CI, 0.92-1.00, up to 91.3% (21/23) sensitivity and up to 100% (24/24) specificity). An alternative four-marker biosignature (sICAM-1, MPO, CXCL8, and IFN-γ) also showed potential, with an AUC of 0.97. Conclusion. We validated a previously identified CSF biosignature and showed that refinement of this biosignature by incorporation of other biomarkers diagnosed TBM with high accuracy. Incorporation of these biomarkers into a point-of-care or bedside diagnostic test platform may result in the improved management of TBM in children.https://www.hindawi.com/journals/mi/2019/7582948/Publisher's versio

    CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries

    No full text
    Objectives: To evaluate the performance of selected host immunological biomarkers in differentiating tuberculosis (TB) disease from latent TB infection (LTBI) in HIV uninfected and infected individuals enrolled in TB low-burden countries. Design: Participants with TB disease (N = 85) and LTBI (N = 150) were recruited from prospective cohorts at hospitals in Norway and Denmark. Plasma concentrations of 54 host markers were assessed by Luminex multiplex immunoassays. Using receiver operator characteristic curves and general discriminant analysis, we determined the abilities of individual and combined biomarkers to discriminate between TB disease and LTBI including when patients were stratified according to HIV infection status. Results: Regardless of the groups compared, CCL1 and IL-2Ra were the most accurate single biomarkers in differentiating TB disease from LTBI. Regardless of HIV status, a 4-marker signature (CCL1+RANTES+CRP+MIP-1α) derived from a training set (n = 155) differentiated TB disease from LTBI in the test set (n = 67) with a sensitivity of 56.0% (95% CI, 34.9–75.6) and a specificity of 85.7% (95% CI, 71.5–94.6). A 5-marker signature derived from the HIV uninfected group (CCL1+RANTES+MIP-1α+procalcitonin+IP-10) performed in HIV-infected individuals with a sensitivity of 75.0% and a specificity of 96.7% after leave-one-out cross validation. A 2-marker signature (CCL1+TNF-α) identified in HIV-infected persons performed in HIV-uninfected with a sensitivity and specificity of 66.7% and 100% respectively in the test set. Conclusions: Plasma CCL1 and IL-2Ra have potential as biomarkers for differentiating TB disease from LTBI in low TB burden settings unaffected by HIV infection. Combinations between these and other biomarkers in bio-signatures for global use warrant further exploration

    Newborn bacille Calmette-Guérin vaccination induces robust infant interferon-γ-expressing natural killer cell responses to mycobacteria

    No full text
    Objectives: The bacille Calmette-Guérin (BCG) vaccine is usually administered at birth to protect against severe forms of tuberculosis in children. BCG also confers some protection against other infections, possibly mediated by innate immune training. We investigated whether newborn BCG vaccination modulates myeloid and natural killer (NK) cell responses to mycobacteria. Methods: BCG vaccination was either administered at birth or delayed to 6 or 10 weeks of age in 130 South African infants. Whole blood was stimulated with BCG and clusters of differentiation (CD)4+ T, myeloid, and NK cell responses were measured by flow cytometry; the levels of secreted cytokines were measured by a multiplex bead array. Results: Newborn BCG vaccination was associated with significantly higher frequencies of BCG-reactive, cytokine-expressing CD4+ T cells, and interferon (IFN)-γ-expressing NK cells than in unvaccinated infants but no differences in cytokine-expressing CD33+ myeloid cells were observed. The induction of BCG-reactive IFN-γ-expressing NK cells was not associated with the markers of NK cell maturation, differentiation, or cytokine receptor expression. BCG-reactive NK cell responses correlated directly with the levels of secreted interleukin (IL)-2 and IFN-γ and the innate pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor (TNF) in BCG-vaccinated infants only. Conclusion: We showed that BCG-reactive IFN-γ-expressing NK cells are strongly induced by BCG vaccination in infants and are likely amplified through bystander cytokines
    corecore