19,044 research outputs found

    Enhancing creative problem solving and creative self-efficacy: a preliminary study

    Get PDF
    The ability to improve creative problem solving (CPS) is considered to be an important resource in a variety of fields such as education (see Murdock, 2003) and business (see Thompson, 2003). Previous research suggests that interventions aimed at training people to improve their CPS skills can be effective, however it is not always clear what tools are being used and it is sometimes difficult to untangle the effect the different tools are having (see Vernon, Hocking, & Tyler, 2016, for a review). This study therefore aimed to utilise an empirically- based creativity toolkit in an 8 week training program aimed at enhancing students' CPS skills. The intervention group was comprised of 33 psychology students who signed up to undertake 8 weeks of CPS training and the control group (n = 9) were matched for contact time, undertaking 8 weeks of cognitive psychology lectures instead. In week 1 (Time 1) and week 8 (Time 2) all participants were assessed using two Unusual Uses Tasks (UUT) and a Creative Problem Solving (CPS) task and were also asked to fill out measures of creative self-efficacy. Analyses revealed that whilst the control group showed no improvement on any of the measures from Time 1 to Time 2, the intervention group showed a significant increase in both their creative self-efficacy and also their levels of creativity on both the UUT and CPS tasks. Whilst a follow- up study utilising a larger control group is ideally needed, these preliminary findings nonetheless support the use of this empirically based creativity toolkit for enhancing creativity problem solving skills

    Interference of diffraction and transition radiation and its application as a beam divergence diagnostic

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1103/PhysRevSTAB.9.052802We have observed the interference of optical diffraction radiation (ODR) and optical transition radiation (OTR) produced by the interaction of a relativistic electron beam with a micromesh foil and a mirror. The production of forward directed ODR from electrons passing through the holes and wires of the mesh and their separate interactions with backward OTR from the mirror are analyzed with the help of a simulation code. By careful choice of the micromesh properties, mesh-mirror spacing, observation wavelength, and filter band pass, the interference of the ODR produced from the unperturbed electrons passing through the open spaces of the mesh and OTR from the mirror are observable above a broad incoherent background from interaction of the heavily scattered electrons passing through the mesh wires. These interferences (ODTRI) are sensitive to the beam divergence and can be used to directly diagnose this parameter. We compare experimental divergence values obtained using ODTRI, conventional OTRI, for the case when front foil scattering is negligible, and computed values obtained from transport code calculations and multiple screen beam size measurements. We obtain good agreement in all cases.This work is supported by the Office of Naval Research and the DOD Joint Technology Offic

    ELM triggering conditions for the integrated modeling of H-mode plasmas

    Full text link
    Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of ExB flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Developing autonomous learning in first year university students using perspectives from positive psychology

    Get PDF
    Autonomous learning is a commonly occurring learning outcome from university study, and it is argued that students require confidence in their own abilities to achieve this. Using approaches from positive psychology, this study aimed to develop confidence in first‐year university students to facilitate autonomous learning. Psychological character strengths were assessed in 214 students on day one at university. Two weeks later their top three strengths were given to them in study skills modules as part of a psycho‐educational intervention designed to increase their self‐efficacy and self‐esteem. The impact of the intervention was assessed against a control group of 40 students who had not received the intervention. The results suggested that students were more confident after the intervention, and that levels of autonomous learning increased significantly compared to the controls. Character strengths were found to be associated with self‐efficacy, self‐esteem and autonomous learning in ways that were theoretically meaningful

    Irreversible field induced magnetostriction at temperatures above and below the order-disorder transition in single crystal Tb5Si2.2Ge1.8

    Get PDF
    This paper reports on the behavior of single crystal Tb5Si2.2Ge1.8 in the vicinity of its order-disorder and order-order phase transition from a higher temperature paramagnetic∕monoclinic state to a lower temperature ferromagnetic∕orthorhombic state. Measurements have been made of thermal and field induced changes in strain along the crystallographic a axis. The material exhibits large strains of up to 1500 ppm when a magnetic field is applied to it in its paramagnetic state but much smaller strains when a field is applied to it in its ferromagnetic state. These field induced strains are different from conventional magnetostriction because they result mostly from the change in crystal structure. As a result of this the field induced strain changes that accompany the phase transitions of this material are not fully reversible. The shape and slope of the strain versus magnetic field curves were distinctly different depending on whether the material started from above the Curie temperature (where the application of a magnetic field of sufficient strength induced a structural phase transformation) or started from below the Curie temperature (where the application of a field merely stabilized the existing magnetic order)

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Coupled-barrier diffusion: the case of oxygen in silicon

    Full text link
    Oxygen migration in silicon corresponds to an apparently simple jump between neighboring bridge sites. Yet, extensive theoretical calculations have so far produced conflicting results and have failed to provide a satisfactory account of the observed 2.52.5 eV activation energy. We report a comprehensive set of first-principles calculations that demonstrate that the seemingly simple oxygen jump is actually a complex process involving coupled barriers and can be properly described quantitatively in terms of an energy hypersurface with a ``saddle ridge'' and an activation energy of ∌2.5\sim 2.5 eV. Earlier calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys. Rev. Let
    • 

    corecore