434 research outputs found

    Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England

    Get PDF
    BACKGROUND: Multidrug-resistant Acinetobacter baumannii commonly causes hospital outbreaks. However, within an outbreak, it can be difficult to identify the routes of cross-infection rapidly and accurately enough to inform infection control. Here, we describe a protracted hospital outbreak of multidrug-resistant A. baumannii, in which whole-genome sequencing (WGS) was used to obtain a high-resolution view of the relationships between isolates. METHODS: To delineate and investigate the outbreak, we attempted to genome-sequence 114 isolates that had been assigned to the A. baumannii complex by the Vitek2 system and obtained informative draft genome sequences from 102 of them. Genomes were mapped against an outbreak reference sequence to identify single nucleotide variants (SNVs). RESULTS: We found that the pulsotype 27 outbreak strain was distinct from all other genome-sequenced strains. Seventy-four isolates from 49 patients could be assigned to the pulsotype 27 outbreak on the basis of genomic similarity, while WGS allowed 18 isolates to be ruled out of the outbreak. Among the pulsotype 27 outbreak isolates, we identified 31 SNVs and seven major genotypic clusters. In two patients, we documented within-host diversity, including mixtures of unrelated strains and within-strain clouds of SNV diversity. By combining WGS and epidemiological data, we reconstructed potential transmission events that linked all but 10 of the patients and confirmed links between clinical and environmental isolates. Identification of a contaminated bed and a burns theatre as sources of transmission led to enhanced environmental decontamination procedures. CONCLUSIONS: WGS is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens

    Genomic epidemiology of multidrug‐resistant Gram‐negative organisms

    Full text link
    The emergence and spread of antibiotic‐resistant Gram‐negative bacteria (rGNB) across global healthcare networks presents a significant threat to public health. As the number of effective antibiotics available to treat these resistant organisms dwindles, it is essential that we devise more effective strategies for controlling their proliferation. Recently, whole‐genome sequencing has emerged as a disruptive technology that has transformed our understanding of the evolution and epidemiology of diverse rGNB species, and it has the potential to guide strategies for controlling the evolution and spread of resistance. Here, we review specific areas in which genomics has already made a significant impact, including outbreak investigations, regional epidemiology, clinical diagnostics, resistance evolution, and the study of epidemic lineages. While highlighting early successes, we also point to the next steps needed to translate this technology into strategies to improve public health and clinical medicine.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147016/1/nyas13672.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147016/2/nyas13672_am.pd

    Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes

    Get PDF
    The composition of a cell in terms of macromolecular building blocks and other organic molecules underlies the metabolic needs and capabilities of a species. Although some core biomass components such as nucleic acids and proteins are evident for most species, the essentiality of the pool of other organic molecules, especially cofactors and prosthetic groups, is yet unclear. Here we integrate biomass compositions from 71 manually curated genome-scale models, 33 large-scale gene essentiality datasets, enzyme-cofactor association data and a vast array of publications, revealing universally essential cofactors for prokaryotic metabolism and also others that are specific for phylogenetic branches or metabolic modes. Our results revise predictions of essential genes in Klebsiella pneumoniae and identify missing biosynthetic pathways in models of Mycobacterium tuberculosis. This work provides fundamental insights into the essentiality of organic cofactors and has implications for minimal cell studies as well as for modeling genotype-phenotype relations in prokaryotic metabolic networks.J.C.X. was sponsored by Fundação para a Ciência e Tecnologia, Portugal [Grant SFRH/BD/81626/2011]. This study was supported by the European Molecular Biology Laboratory, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01–0145-FEDER-006684) and BioTecNorte operation (NORTE-01–0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement no 686070

    Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer

    Get PDF
    In worldwide conditions of increasingly antibiotic-resistant hospital infections, it is important to research alternative therapies. Bdellovibrio bacteriovorus bacteria naturally prey on Gram-negative pathogens, including antibiotic-resistant strains and so B. bacteriovorus have been proposed as "living antibiotics" to combat antimicrobially-resistant pathogens. Predator-prey interactions are complex and can be altered by environmental components. To be effective B. bacteriovorus predation needs to work in human body fluids such as serum where predation dynamics may differ to that studied in laboratory media. Here we combine mathematical modelling and lab experimentation to investigate the predation of an important carbapenem-resistant human pathogen, Klebsiella pneumoniae, by B. bacteriovorus in human serum versus buffer. We show experimentally that B. bacteriovorus is able to reduce prey numbers in each environment, on different timescales. Our mathematical model captures the underlying dynamics of the experimentation, including an initial predation-delay at the predator-prey-serum interface. Our research shows differences between predation in buffer and serum and highlights both the potential and limitations of B. bacteriovorus acting therapeutically against K. pneumoniae in serum, informing future research into the medicinal behaviours and dosing of this living antibacterial

    Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.

    Get PDF
    <div><p>Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in <em>Saccharomyces cerevisiae</em>.</p> </div

    Comparative assessment of performance and genome dependence among phylogenetic profiling methods

    Get PDF
    BACKGROUND: The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes. RESULTS: In order to evaluate the performance of phylogenetic profiling in eukaryotes, we assessed the relative performance of commonly used profile construction techniques and genome compositions in predicting functional linkages in both prokaryotic and eukaryotic organisms. When predicting linkages in E. coli with a prokaryotic profile, the use of continuous values constructed from transformed BLAST bit-scores performed better than profiles composed of discretized E-values; the use of discretized E-values resulted in more accurate linkages when using S. cerevisiae as the query organism. Extending this analysis by incorporating several eukaryotic genomes in profiles containing a majority of prokaryotes resulted in similar overall accuracy, but with a surprising reduction in pathway diversity among the most significant linkages. Furthermore, the application of phylogenetic profiling using profiles composed of only eukaryotes resulted in the loss of the strong correlation between common KEGG pathway membership and profile similarity score. Profile construction methods, orthology definitions, ontology and domain complexity were explored as possible sources of the poor performance of eukaryotic profiles, but with no improvement in results. CONCLUSION: Given the current set of completely sequenced eukaryotic organisms, phylogenetic profiling using profiles generated from any of the commonly used techniques was found to yield extremely poor results. These findings imply genome-specific requirements for constructing functionally relevant phylogenetic profiles, and suggest that differences in the evolutionary history between different kingdoms might generally limit the usefulness of phylogenetic profiling in eukaryotes

    Properties of local interactions and their potential value in complementing genome-wide association studies

    Get PDF
    Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits

    Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network

    Get PDF
    An evidence-weighted functional-linkage network of human genes reveals associations among diseases that share no known disease genes and have dissimilar phenotype

    Towards the identification of essential genes using targeted genome sequencing and comparative analysis

    Get PDF
    BACKGROUND: The identification of genes essential for survival is of theoretical importance in the understanding of the minimal requirements for cellular life, and of practical importance in the identification of potential drug targets in novel pathogens. With the great time and expense required for experimental studies aimed at constructing a catalog of essential genes in a given organism, a computational approach which could identify essential genes with high accuracy would be of great value. RESULTS: We gathered numerous features which could be generated automatically from genome sequence data and assessed their relationship to essentiality, and subsequently utilized machine learning to construct an integrated classifier of essential genes in both S. cerevisiae and E. coli. When looking at single features, phyletic retention, a measure of the number of organisms an ortholog is present in, was the most predictive of essentiality. Furthermore, during construction of our phyletic retention feature we for the first time explored the evolutionary relationship among the set of organisms in which the presence of a gene is most predictive of essentiality. We found that in both E. coli and S. cerevisiae the optimal sets always contain host-associated organisms with small genomes which are closely related to the reference. Using five optimally selected organisms, we were able to improve predictive accuracy as compared to using all available sequenced organisms. We hypothesize the predictive power of these genomes is a consequence of the process of reductive evolution, by which many parasites and symbionts evolved their gene content. In addition, essentiality is measured in rich media, a condition which resembles the environments of these organisms in their hosts where many nutrients are provided. Finally, we demonstrate that integration of our most highly predictive features using a probabilistic classifier resulted in accuracies surpassing any individual feature. CONCLUSION: Using features obtainable directly from sequence data, we were able to construct a classifier which can predict essential genes with high accuracy. Furthermore, our analysis of the set of genomes in which the presence of a gene is most predictive of essentiality may suggest ways in which targeted sequencing can be used in the identification of essential genes. In summary, the methods presented here can aid in the reduction of time and money invested in essential gene identification by targeting those genes for experimentation which are predicted as being essential with a high probability

    Genome-scale modeling of yeast: chronology, applications and critical perspectives

    Get PDF
    Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the main challenges and future perspectives for the field are finally addressedThis work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of a Ph.D. grant (PD/BD/52336/2013), of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01–0145FEDER-006684) and also in the context of the EU-funded initiative ERA-NET for Industrial Biotechnology (ERA-IB-2/0003/2013), in addition to the BioTecNorte operation (NORTE-01–0145FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
    corecore