10 research outputs found

    The cytoplasmic domain of tomato spotted wilt virus Gn glycoprotein is required for Golgi localisation and interaction with Gc

    Get PDF
    AbstractEnvelopment of tomato spotted wilt virus nucleocapsids occurs at the Golgi stacks of infected cells. This is also the place where the two membrane glycoproteins Gn and Gc accumulate upon coexpression. The required Golgi retention signal has previously been demonstrated to reside within Gn. Using a series of truncated Gn proteins, the Golgi retention signal was mapped to a stretch of 10 amino acids on this protein's cytoplasmic tail, 20 residues downstream the transmembrane domain. Studies on the intracellular distribution of chimeric Gc proteins in which the cytoplasmic tail and/or transmembrane domain were exchanged by those from Gn, demonstrated the additional requirement of the Gn transmembrane domain for Golgi targeting. Truncated Gn constructs lacking the C-terminal 20 amino acids but still localising to the Golgi were no longer able to redirect Gc, suggesting the requirement of this domain for interaction with Gc

    White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    Get PDF
    AbstractWhite spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of entry and systemic infection of WSSV in the black tiger shrimp, Penaeus monodon, and the role of these proteins in these processes are not known. A specific polyclonal antibody was generated against the major envelope protein VP28 using a baculovirus expression vector system. The VP28 antiserum was able to neutralize WSSV infection of P. monodon in a concentration-dependent manner upon intramuscular injection. This result suggests that VP28 is located on the surface of the virus particle and is likely to play a key role in the initial steps of the systemic WSSV infection in shrimp

    The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle

    Get PDF
    For a primary active pump, such as the human ATP-binding-cassette (ABC) transporter ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism, but is poorly understood at the biochemical level. Structure data suggest that signals are transduced through intracellular loops of the TMDs that slot into grooves on the NBDs. At the base of these grooves is the Q loop. We therefore mutated the eponymous glutamine in one or both NBD Q loops and measured the effect on conformation and function by using a conformation-sensitive antibody (UIC2) and a fluorescent drug (Bodipy-verapamil), respectively. We showed that the double mutant is trapped in the inward-open state, which binds the drug, but cannot couple to the ATPase cycle. Our data also describe marked redundancy within the transport mechanism, because single-Q-loop mutants are functional for Bodipy-verapamil transport. This result allowed us to elucidate transduction pathways from twin drug-binding cavities to the Q loops using point mutations to favor one cavity over the other. Together, the data show that the Q loop is the central flexion point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.-Zolnerciks, J. K., Akkaya, B. G., Snippe, M., Chiba, P., Seelig, A., Linton, K. J. The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle

    CAR Modulates E-Cadherin Dynamics in the Presence of Adenovirus Type 5

    Get PDF
    Adenovirus (Ad) serotype 5 (Ad5) fiber competitively binds to the coxsackievirus and Ad receptor (CAR) to attach Ad5 to target cells and also disrupts cell junctions and facilitates virus escape at a late stage in Ad5 infection. Here we demonstrate that paracellular permeability in MCF7 and CAR overexpressing MCF7 (FLCARMCF7) cells is increased within minutes following the addition of Ad5 to cells. This is brought about, at least in part, by altering the molecular dynamics of E-cadherin, a key component of the cell-cell adhesion complex. We also demonstrate that the increase in E-cadherin mobility is constitutively altered by the presence of CAR at FLCARMCF7 cell junctions. As increased paracellular permeability was observed early after the addition of Ad5 to cells, we postulate that this may represent a mechanism by which Ad5 could disrupt cell junctions to facilitate further access to its cell receptors
    corecore