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Abstract        

        

For a primary active pump like the human ATP-Binding-Cassette (ABC) transporter 

ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the 

ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the 

transport mechanism but is poorly understood at the biochemical level. Structure data 

suggest that signals are transduced through intracellular loops of the TMDs that slot into 

grooves on the NBDs. At the base of these grooves is the Q-loop. We therefore mutated 

the eponymous glutamine in one or both NBD Q-loops and measured the impact on 

conformation and function using a conformation-sensitive antibody and fluorescent 

drugs, respectively. We show that the double mutant is trapped in the inward-open state 

which binds drug but cannot couple to the ATPase cycle. Our data also describe 

remarkable redundancy within the transport mechanism because single Q-loop mutants 

are functional for Bodipy-verapamil transport. This allowed us to elucidate transduction 

pathways from twin drug-binding cavities to the Q-loops using point mutations to favour 

one cavity over the other. Together, the data show that the Q-loop is the central flexion 

point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.  
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Introduction 

 

The human ATP Binding Cassette (ABC) transporter ABCB1, formerly known as P-

glycoprotein and MDR1, is an efflux pump of very broad solute specificity that includes 

lipid-signalling molecules and drugs of therapeutic value. Its function is known to cause 

clinical multidrug resistance (1). ABCB1 is a prototypical ABC transporter consisting of four 

domains in a single polypeptide (2): two nucleotide-binding domains (NBDs) form two 

composite ATP-binding pockets, and two transmembrane domains (TMDs) form the 

translocation pathway across the lipid bilayer and impart specificity by binding the 

transported drugs (3-5).  

 

X-ray structure models of five homologous ABC exporters are present in the protein 

database (drug efflux pumps from Mus musculus (Abcb1a) (6), Staphylococcus aureus 

(Sav1866) (7) and Caenorhabditis elegans (CeAbcb1) (8); the lipid A exporter from various 

Gram negative bacteria (9); and a mitochondrial transporter of unknown function (ABCB10) 

from Homo sapiens (10)). The apo forms of four of these, Abcb1a, CeAbcb1, MsbA from 

Vibrio cholera and ABCB10 crystallized in an inward-open conformation in which there is 

no direct intramolecular contact between the two NBDs (depicted in the left hand model of 

Figure 1A). Their TMD α-helices are angled such that they describe an inverted ‘V’, 

forming an apex at the extracellular face of the membrane. The large internal cavity, open 

towards the inner leaflet of the membrane and the cytosol, is thought to form the solute-

binding surface (Abcb1a was also co-crystallized with cyclic peptide inhibitors bound in this 

cavity). The resolution of the Abcb1a structure does not allow precise assignment of the 

amino acids involved in co-ordinating the bound drugs, but pharmacological labelling and 

modelling studies demonstrate the presence of two cavities at the TMD:TMD interface 

which are related by two-fold pseudo-symmetry and which can be separated by mutation 

(11-13). Both cavities are capable of binding verapamil, and the bundles of α-helices formed 

by the TMDs as they cross the membrane ensures that amino acid residues from both TMDs 

line each cavity (Figure 1B) (12). In contrast, MsbA from Salmonella typhimurium and 

Sav1866 were crystallized in an inward-closed conformation (depicted in the central and 

right hand models of Figure 1A). The NBDs of these transporters are in close apposition and 
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co-ordinate nucleotide or nucleotide analogues at their interface. In this inward-closed 

conformation the TMD α-helices describe a regular ‘V’ that exposes the putative solute 

binding sites extracellularly. Co-crystals of ABCB10 with nucleotide analogues were also 

obtained. These holo structures crystallised both in an inward-open state and in various 

partially-closed states suggesting that nucleotide by itself is insufficient to trigger formation 

of an inward-closed conformation for ABCB10 that is stable under crystallization conditions. 

 

Taken together, the structure data suggest a bellows-like mechanism (Figure 1A) that 

conforms to the alternate access mode of action of membrane pumps first proposed by 

Jardetzky in 1966 (14). For ABCB1, drugs are reported to bind to the TMDs directly from 

the inner leaflet of the membrane. These would need to induce conformational change at the 

NBDs which allows the NBDs to interact directly and bind two molecules of ATP at their 

interface (the structure data for ABCB10 suggests that the NBDs may be poised with ATP 

already bound to the F1-core subdomains (see below) in the absence of drug). In ABCB1, 

nucleotide binding is reported to be sufficient to lower the affinity for drug and presumably 

also reconfigures the drug-binding cavities to release drug extracellularly (15, 16). The 

energy released from subsequent ATP hydrolysis is thought to be used to drive the exporter 

back to the inward-open conformation to re-expose the binding cavities to the inner leaflet of 

the membrane and restore their high affinity for drugs. This coupling of the aspect and 

affinity of the drug-binding sites of the TMDs to the closure of the NBD:NBD interface 

around the bound ATPs is fundamental to the transport cycle of ABC exporters but is poorly 

understood at the molecular mechanistic level. It is to the nature of the TMD:NBD interface 

that we need to look to understand it. The ABC exporter structure data (modelled for 

ABCB1 in Figures 1C and 1D) shows that the conserved Q-loop occupies a position at the 

base of a cleft in the top surface of the NBD into which a short helix formed by the TMD is 

docked. Each TMD of ABC exporters forms two such helices at the apices of two long 

intracellular loops. These two helices contact different NBDs allowing both TMDs to 

influence both NBDs even when the two NBDs are spatially separated. The TMDs of type I 

and type II ABC importers, epitomised by the maltose importer MalEFGK2 (17) and the 

vitamin B12 importer BtuC2D2 (18), respectively, form only one “coupling” helix which, 

despite the lack of primary sequence similarity, is structurally and positionally equivalent to 
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the ABC exporter helix that fits into the cleft lined by the Q-loop (19-21). The Q-loop also 

links the F1-core and α-helical subdomains of the NBDs (best illustrated in Figure 3). In the 

inward-closed conformation of the ABC exporters, the two ATPs are bound between the F1-

core of one NBD and the α-helical subdomain of the second (Figure 1D). Higher resolution 

structural data obtained for soluble bacterial NBDs crystallized in the presence and absence 

of nucleotides suggested that flexion of the Q-loop may allow movement of the α-helical 

subdomain with respect to the F1-core to control allosteric coupling between the two ATP-

binding pockets (22-24). The Q-loop is therefore critically positioned to couple ligand 

binding by the TMDs to ATP binding at the NBDs in all ABC transporters.  

 

We report here the first evidence of the crucial role played by the Q-loops in the 

intramolecular coupling mechanism of human ABCB1. Our approach was to mutate the 

eponymous glutamine in one, or both, NBD Q-loops and measure the impact on ABCB1 

conformation and function. By combining these Q-loop mutants with further mutations in the 

TMDs that prevent occupancy of one or other drug-binding cavity we have also dissected the 

energy transduction pathways coupling the individual drug-binding cavities to the ATP 

catalytic cycle of the transporter. 

 

Materials and Methods 

 

Reagents. Dulbecco’s modified eagle medium (DMEM), DMEM/F-12, fetal bovine 

serum (FBS), phosphate buffered saline (PBS), TrypLE Express, and Bodipy-verapamil 

were all purchased from Invitrogen (Carlsbad, CA). The detergent n-dodecyl-β-D-

maltoside was purchased from Merck Serono (Feltham, UK). Lipids were purchased from 

Avanti Polar Lipids (Alabaster, AL). All other general chemicals were from Sigma 

(Poole, UK). 

 

Plasmids. Mutations were introduced into a plasmid encoding human ABCB1 with a C-

terminal hexahistidine tag (pCIneo-wtABCB1-6His; described previously (25)) by site-

directed mutagenesis (QuikChange XL; Stratagene, La Jolla, CA) using the following 

oligonucleotides:  
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Q132A, 5’-GGTTGCTGCTTACATCGCGGTTTCATTTTGGTGC-3’;  

Q132R, 5’-GGTTGCTGCTTACATTCGAGTTTCATTTTGGTGC-3’; 

Q475A, 5’-GGGAAATCATTGGTGTGGTGAGTGCTGAGCCTGTATTGTTTGCCACCACG-3’;  

Q773A, 5’-GGAATTATTTCTTTTATTACATTTTTCCTTGCGGGTTTCACATTTGGCAAAGCTGG-3’;  

Q773R, 5’-GGAATTATTTCTTTTATTACATTTTTCCTTCGAGGTTTCACATTTGGCAAAGCTGG-3’;  

Q1118A, 5’-GGGCATCGTGTCCGCGGAACCCATCCTGTTTG-3’;  

E556Q, 5’-CCCCAAGATCCTCCTGCTTGATCAGGCCACGTCAGCCTTGG-3’; 

E1201Q, 5’-CAGCCTCATATTTTGCTTCTTGATCAGGCCACGTCAGCTCTGGATAC-3’.  

For expression in insect cells, the tagged wild-type and mutant ABCB1 cDNAs were sub-

cloned into the baculovirus transfer vector pBlueBAC4.5 (Invitrogen, Carlsbad, CA) 

using BamHI and NotI restriction sites at the 5’- and 3’-ends of the gene, respectively. 

The veracity of all plasmids was confirmed by DNA sequencing.  

 

Expression in human cells. HEK293T cells were transfected-transiently using 

polyethyleneimine (PEI), as described previously (25). Equivalent expression levels of 

each mutant ABCB1 and wild-type protein were confirmed using saturating amounts of 

the ABCB1-specific primary antibody 4E3 (AbD Serotec, Oxford, UK) and R-

phycoerythrin-conjugated goat anti-mouse secondary antibodies (Dako UK Ltd, Ely, 

UK), as described previously (26). UIC2-PE binding was carried out as described by the 

supplier (Immunotech, Beckman Coulter, CZ). 

 

Drug transport assays. Each ABCB1 mutant was assessed for function using the 

fluorescent drug accumulation assay, described previously (25, 27). Briefly, HEK293T 

cells were transfected transiently with plasmids encoding wild-type or mutant ABCB1 

and harvested 48 hours post-transfection. The live cells were incubated with 4E3 

antibody, as described above, to label the surface ABCB1, and then with Bodipy-

verapamil (0.8 μM) for 30min at 37oC to assess transport activity. The fluorescence 

associated with cells of normal size and granularity was quantified using a FACScan flow 

cytometer. Flow cytometry data were acquired using CellQuest (BD Biosciences, San 

Jose, CA) and analysed using FlowJo (Tree Star, Ashland, OR). As each population of 

transfected cells contains both transfected (ABCB1-expressing) and untransfected 

(ABCB1-negative) cells distinguished on the basis of 4E3 antibody binding, the 
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untransfected subpopulation was used as an internal control for measuring Bodipy-

verapamil accumulation. ABCB1 transport activity was assessed as the fold difference in 

drug accumulation between the ABCB1-expressing and non-expressing cell populations 

within each experiment.  

 

Confocal microscopy. Primary antibody 4E3 (AbD Serotec, Oxford, UK) was 

conjugated to Alexa633 dye using the Mix-n-Stain (Biotium, Hayward, CA, USA) 

according to the manufacturer’s instructions. Transiently-transfected HEK293T cells 

were split, 24h post-transfection, onto glass-chamber slides (Lab-Tek, Thermo Fisher 

Scientific, Waltham, Massachusetts, USA). 48hrs post-transfection, the live cells were 

washed 3x in DMEM/F12 medium then incubated with the Alexa633-conjugated 4E3 

antibody (1/100 dilution in DMEM/F12 medium) plus Bodipy-verapamil (0.8μM) for 

30min at 37oC, 5% CO2. The cells were washed 3x then imaged using a Zeiss LSM510 

inverted confocal laser scanning microscope. Images were obtained using a plan-

apochromat 63x oil objective with a numerical aperture of 1.4. Bodipy was excited using 

the Argon laser (488nm laser line) and Alexa633 using the HeNe laser (633nm). Bodipy 

emission was detected using the HFT UV/488/543/633 main dichroic beam splitter in 

combination with a band pass filter (BP 505-530) and Alexa633 was detected using a 

NFT 545 secondary beam splitter and a long pass filter (LP650). Multitrack mode 

allowed for crosstalk-free imaging of the two dyes. 

 

Purification of ABCB1. Generation of recombinant baculovirus, growth and 

maintenance of High Five insect cells and the production of crude membrane fractions 

was as described elsewhere (28). ABCB1 was purified from crude membrane fractions 

using Ni-NTA resin (Qiagen) as described previously (29), with the following 

modifications. Initial binding of solubilised membrane protein to the resin was performed 

in the presence of 5mM imidazole; wash steps used 20mM, 30mM and 35mM imidazole. 

Purified protein was eluted from the resin in 120mM imidazole. To monitor purification, 

proteins were separated by 7.5% SDS-PAGE and visualized by colloidal blue staining.  
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Reconstitution of purified ABCB1 into proteoliposomes and measurement of 

ATPase activity. ABCB1 was reconstituted into liposomes as described previously (29). 

To assess efficiency, the lipid was spiked with [3H]-phosphatidylcholine and lipid and 

protein were equilibrated in a sucrose gradient by ultracentrifugation. Protein and lipid 

content of the fractions were analysed by SDS-PAGE and liquid scintillation counting, 

respectively, as detailed elsewhere (28).                                 

 
Cytosensor microphysiometer measurements of extracellular acidification rates 

(ECAR). ECAR of live HEK293T cells were measured in an eight-channel Cytosensor 

microphysiometer (Molecular Devices, Menlo Park, CA), as described elsewhere (31-34). 

Briefly, 6 x 105 cells were seeded onto 12mm diameter polycarbonate cell capsule cups in 

1ml cell culture medium and incubated for 6h at 37oC. On transfer to the Cytosensor, the 

culture medium was replaced by pumping low buffer-capacity flow medium (prepared 

from dry powder DMEM without sodium bicarbonate, but supplemented with 1mM 

sodium pyruvate to reduce basal ECAR values, and 2.6 g/L sodium chloride to preserve 

osmolarity) through the flow chamber at a rate of 100μl/min. The cells were left to 

equilibrate until a constant ECAR was reached (30-60 minutes) before switching the 

medium flowing over the cells to drug-containing medium. A measuring cycle lasted 2 

minutes during which the flow was switched off for 20 seconds to measure acidification 

yielding one data point. Each stimulation cycle for a given drug concentration was 

repeated several times, after which the cells were washed with pure medium until the 

basal activity was recovered. All stimulations were reversible. Cells are primarily 

glycolytic in culture, hence, one molecule of glucose consumed is converted into two 

molecules of ATP and two molecules of lactic acid. The latter are secreted from the cell 

and quantified via ECAR measurements. As ATP is resynthesized on demand, the 

number of lactic acid molecules extruded directly corresponds to the number of ATP 

molecules consumed.  

ECAR data were analysed using a two-site binding model based on uncompetitive 

inhibition, described previously (31, 35-37), in which drug activates ABCB1 at low 

concentrations and inhibits at high concentrations.   
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Vs, ECAR as a function of the drug concentration Cs; V0, basal ECAR in the absence of 

drug; V1, maximum ECAR assuming only activation; V2, activity at infinite drug 

concentration; K1, drug concentration giving half-maximum activation; K2, drug 

concentration giving half-maximum reduction. 

 

Statistical analyses. Student’s two-tailed t-test was used to analyse differences between 

means. Differences among means were analysed using two-way ANOVA followed by 

pairwise Student-Newman-Keuls post hoc testing. 

 

Results  

 

The Q-loops of the NBDs are essential for drug efflux but redundancy is built into 

the molecular mechanism. Site-directed mutagenesis was used to introduce glutamine-

to-alanine mutations into NBD1 (NBD1-Q475A), NBD2 (NBD2-Q1118A), and into both 

NBDs of human ABCB1. As controls, mutations E556Q and E1201Q in the Walker B 

motifs of each NBD that render the transporter catalytically-inactive were also generated. 

HEK293T cells were transfected transiently with each of the plasmids and the expression 

and function of the mutant and wild-type transporters was analysed by two-wavelength 

flow cytometry. The non-inhibitory anti-ABCB1 antibody (4E3) which recognises an 

extracellular loop of the transporter was used at saturating concentrations with a red 

fluorescent secondary to determine the level of expression at the plasma membrane, and 

the green fluorescent drug derivative (Bodipy-verapamil) was used to assess transport 

activity. Figure 2A shows a representative dotplot for a population of cells transfected 

with pCIneo-wtABCB1-6His showing that cells expressing ABCB1 (upper left 

population) accumulate very little Bodipy-verapamil compared with non-transfected cells 

(lower right population) within the same sample. The fold difference in drug 

accumulation between the G1 and G2 gated cells provides a measure of the transport 

activity of ABCB1. None of the mutations introduced into ABCB1 had a significant 
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effect on the level of protein expression in HEK293T cells as shown in the example 

histogram describing 4E3 staining (Figure 2B). Cell populations with equal surface 

expression of mutant and wild-type forms of ABCB1 could therefore be gated for analysis 

of transport function (analytical gates G1 and G2 in Figure 2, correspond to regions M1 

and M2 in Figure 2B, respectively). Cells expressing the single NBD Q-loop mutants, 

NBD1-Q475A, or NBD2-Q1118A, accumulated only low levels of Bodipy-verapamil 

similar, but not identical to, those expressing wild-type ABCB1 (Figure 2C). The 

reproducible but subtle difference in Bodipy-verapamil transport activity by the single Q-

loop mutants did not reach statistical significance (shown in the first four columns of 

Figure 6). In contrast, cells expressing the double mutant Q475A/Q1118A exhibited no 

efflux activity, and rather surprisingly, and reproducibly, accumulated more Bodipy-

verapamil than mock-transfected cells or cells expressing the Walker B mutant E1201Q of 

ABCB1 (Figure 2C; the raw dotplot data also showed that Bodipy-verapamil accumulation 

increases linearly with increasing expression of Q475A/Q1118A (Supplementary Figure 

1)).  

 

The double Q-loop Q475A/Q1118A mutant is trapped in the inward-open 

conformation. The extracellular loops of human ABCB1 form a discontinuous epitope for 

the antibody UIC2, characterised by Igor Roninson’s group (38, 39). UIC2 is sensitive to 

the conformation of ABCB1 and binds preferentially to ATP-free ABCB1, corresponding 

to the inward-open conformation shown in Figure 1A. Consequently, UIC2 binds more 

readily to wild-type ABCB1 than the Walker B mutant E1201Q (Figure 2D) in cells that 

express equal amounts of these proteins, because the Walker B mutant can bind but cannot 

hydrolyse ATP (40). The Walker B mutants therefore get trapped in the inward-closed 

conformation with a stable NBD:NBD interface around the bound ATP. UIC2 

reproducibly binds most readily to the Q475A/Q1118A mutant suggesting that it adopts a 

conformation consistent with the inward-open state that would be expected to have a high 

affinity for UIC2. The single Q-loop mutants exhibit a phenotype for UIC2 binding that is 

indistinguishable from the wild-type transporter, reflecting the levels of functionality of 

these single mutants. 
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The additional Bodipy-verapamil accumulated by cells that express the double Q-loop 

mutant prompted examination of the subcellular localisation of the accumulated drug. 

Confocal microscopy showed that cells expressing wild-type ABCB1 (stained with the 

non-inhibitory 4E3 conjugated to a red-fluorophore) accumulated no fluorescent drug 

(Figure 3, upper panels) because the wild-type transporter efficiently effluxes drug from 

the cells. Non-expressing cells included in the same field of view accumulated the green 

Bodipy-verapamil in intracellular compartments. In contrast, cells expressing the 

Q475A/Q1118A mutant accumulated Bodipy-verapamil both in intracellular 

compartments and the plasma membrane where it co-localises with the 4E3 staining 

(Figure 3, middle panels). Prior data shows that in the absence of ATP, ABCB1 adopts a 

conformation with a high affinity for drug (16). The microscopy data is therefore 

consistent with the UIC2-binding data and suggests that the Q475A/Q1118A adopts the 

inward-open conformation which, in the absence of the two Q-loop glutamines cannot 

form the NBD:NBD interface, provides additional drug-binding sites in the plasma 

membrane, and explains the increased accumulation of Bodipy-verapamil in these cells. 

In contrast, no Bodipy-verapamil was detected bound to the Walker B E1201Q mutant 

which becomes trapped in the inward-closed conformation. Cells expressing this mutant 

therefore accumulate drug only intracellularly (Figure 3, lower panels). This is also 

consistent with previously published data which shows that non-hydrolysable 

trinucleotides trap ABCB1 in a conformation with a low affinity for drug (16).  

 

The single Q-loop mutants retain the ability to hydrolyse ATP in live cells but not 

post-purification. The drug export activity of the single Q-loop mutants was unexpected 

because equivalent mutations in mouse Abcb1a were reported to reduce drug-stimulated 

ATPase activity by >95% (41). In this earlier paper, the activity of the purified protein 

was characterised thoroughly in vitro, but drug transport was not analysed. Our 

observations of the human transporter, interpreted in light of this prior data, suggested 

that drug transport may have become uncoupled from ATPase activity in ABCB1. We 

therefore replicated the Abcb1a experiments performed previously, with the human 

transporter. Wild-type and mutant forms of the human transporter were expressed in 
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insect cells, solubilised from the membrane using n-dodecyl-β-D-maltoside  (DDM), and 

purified by nickel-affinity chromatography (Figure 4A). ABCB1 is inactive in DDM at 

the concentrations needed for solubilisation therefore the purified protein was mixed with 

detergent-solubilised membrane lipids and ABCB1-liposomes were reconstituted by the 

slow removal of detergent.  

 

The kinetics of drug-stimulated ATPase activity of wild-type and mutant ABCB1 fitted 

the Michaelis-Menten equation (Figure 4B). The low basal ATPase activity of the wild-

type ABCB1 that was stimulated 11-fold by drug to a high Vmax for ATP hydrolysis of 1.7 

μmol/min/mg and a Km of 0.75mM (Table 1) compared favourably with previous reports 

of the catalytic activity of purified ABCB1, indicative of efficient reconstitution of the 

active transporter into proteoliposomes (42-44). The drug-stimulated ATPase activity of 

the single Q-loop mutants was reduced to 9.5% and 8.1% of the wild-type activity for the 

NBD1-Q475A and NBD2-Q1118A mutants, respectively, and the double mutant was 

inactive (the basal ATPase activities of these mutants were similarly affected; Figure 4B 

and C). The observed difference was not due to the differential ability of the mutant 

proteins to form proteoliposomes as all three mutants reconstituted into the lipid with the 

same efficiency as the wild-type protein (Supplementary Figure 2). The data are largely 

consistent with the in vitro observations of Urbatsch et al., (41), effectively ruling out the 

possibility that the Q-loop mutants of mouse Abcb1a and human ABCB1 differ 

significantly.  

 

These in vitro data suggested uncoupling of drug transport from ATPase activity in the 

single Q-loop mutants. However, to prove this unequivocally would require measurement 

of ATPase activity and drug transport in the same system. ABCB1 drug transport into 

proteoliposomes does not appear to be possible, most likely due to low protein:lipid 

ratios, the hydrophobicity, and the leakiness of large unilamellar liposomes to the 

transported drugs, so we therefore measured the ATPase activity of ABCB1 in intact 

human cells using extracellular acidification rates (ECAR) as a proxy. ECAR is non-

invasive and measures the increase in lactate efflux from the cell which directly correlates 

to turnover of ATP upon drug stimulation in living cells (Figure 5A-E). The data best 
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fitted a modified Michaelis-Menten equation producing bell-shaped curves, consistent 

with previous work which showed that a variety of different drugs stimulate ABCB1 at 

low concentrations but inhibit the transporter at high concentrations (31, 45).  

 

Cells expressing wild-type ABCB1 exhibited a drug-stimulated acidification rate (V1 

value) 1.34-fold above basal, whereas mock transfected cells had a negligible response 

(<1.05-fold), indicating that the increase in ECAR was due to the expression, and ATP 

catalytic activity, of ABCB1 (Table 2). The V1 values for cells expressing single mutants 

NBD1-Q475A and NBD2-Q1118A were 1.19-fold and 1.13-fold above basal rates, 

respectively, corresponding to 50% and 35% of the ATPase activity of wild-type 

ABCB1. No increase in ECAR in the presence of verapamil was detected in cells 

expressing the Q-loop double mutant Q475A/Q1118A. It seems likely therefore, that the 

lack of correlation with the in vitro data is due to inactivation of the single Q-loop 

mutants during purification. The simplest conclusion is that 9 out of every 10 transporter 

proteins reconstituted into proteoliposome preparations of single Q-loop mutants are 

inactive thus accounting for the reduction in both basal and drug-stimulated ATPase 

activity in these preparations. Together, these data show that the very low ATPase 

activity in vitro described in Table 1 and reported previously is an artefact due to the 

instability of the Q-loop mutants during purification. 

 

The Q-loops are necessary to couple the drug-binding sites to the ATP binding sites. 

The two pseudo-symmetrical drug-binding cavities of ABCB1 can be manipulated 

independently by mutagenesis of residues Q132 (TMD1) and Q773 (TMD2) that line the 

cavities (Figure 1B, (12)). Replacement of the two TMD glutamines with arginines is 

reported to repel positively-charged drugs but have no effect on neutral drugs. Single 

mutants in which the glutamine in either TMD1 or TMD2 was replaced with arginine had 

intermediate phenotypes consistent with transport of the positively-charged drug only 

from the remaining wild-type drug-binding cavity (12). We introduced these glutamine to 

arginine mutations into ABCB1 and assessed their effect on Bodipy-verapamil export 

using two-colour flow cytometry. The TMD mutations had no effect on ABCB1 

expression at the plasma membrane (Supplementary Figure 3). The single mutant TMD1-
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Q132R was able to efflux Bodipy-verapamil with 70% efficiency of the wild-type protein 

while the TMD2-Q773R was fully active and indistinguishable from wild-type ABCB1 

(grey bars in Figure 6 in which transport data are presented as the fold reduction in 

Bodipy-verapamil accumulation compared to mock-transfected cells). These data are 

consistent with prior observations which concluded that verapamil had a preference for 

binding to the cavity lined by Q132 (12). The double arginine mutant Q132R/Q773R, 

retains ability to export Bodipy-verapamil but it is significantly reduced to 42% 

(p<0.001) of wild-type ABCB1 activity. This residual activity is likely due to the partial 

masking of the positive charge on verapamil by the Bodipy moiety such that electrostatic 

repulsion from Q132R or Q773R is incomplete. The catalytically-inactive Walker B 

mutants NBD1-E556Q and NBD2-E1201Q (46) were also tested for comparison and are 

unable to efflux Bodipy-verapamil. 

 

To test whether each verapamil-binding cavity was coupled to the NBDs via a specific Q-

loop we combined the single drug-cavity mutants TMD1-Q132R and TMD2-Q773R with 

the NBD Q-loop mutants NBD1-Q475A and NBD2-Q1118A and compared their 

transport activity (striped bars in Figure 6) with that of the drug cavity mutants and also 

the single and double Q-loop mutants (white bars; note that the double Q-loop mutant has 

a fold-difference that is less than 1 because it provides additional binding sites for 

Bodipy-verapamil in the membrane). The drug-cavity mutant TMD1-Q132R combined 

synergistically with NBD1-Q475A to significantly reduce Bodipy-verapamil export 

activity to 25% of wild-type activity, but in combination with NBD2-Q1118A the 

transporter retained the full level of activity of each single mutant (at 85% of the wild-

type activity this was not significantly different from the Q132R mutant or the Q1118A 

mutant). This shows that the wild-type Q773-lined verapamil-binding cavity of the 

Q132R mutant is dedicated to, and only requires, the NBD1 Q-loop to couple to the ATP 

catalytic cycle. In contrast, TMD2-Q773R combined synergistically with both NBD1-

Q475A and NBD2-Q1118A to reduce Bodipy-verapamil export activity to 22% and 34% 

of the wild-type activity, respectively. This shows that the wild-type Q132-lined 

verapamil-binding cavity of these mutants is coupled to, and requires, the Q-loops of both 

NBDs to trigger efflux.  
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Discussion 
 

The Q-loop is the flexion point where the aspect and affinity of the drug-binding 

cavities couple to the ATP catalytic cycle.  

The Q-loops are essential to the molecular mechanism of ABCB1, because the double Q-

loop mutant is trapped in an inward-open conformation that retains affinity for Bodipy-

verapamil but cannot trigger the transport cycle and therefore cannot efflux Bodipy-

verapamil. In contrast, the single Q-loop mutants retain wild-type levels of Bodipy-

verapamil transport activity, demonstrating a surprising level of redundancy in the 

mechanism that is not observed for Walker B mutants of ABC exporters ((47) and data 

herein) or in ABC importers (48). The high level of Bodipy-verapamil efflux activity of 

the single Q-loop mutants in live cells allowed the role of the Q-loop in the coupling 

mechanism of ABCB1 to be investigated. The single Q-loop mutants combined with 

TMD mutants, Q132R in TMD1 or Q773R in TMD2, which line the two verapamil-

binding cavities (12), showed that Bodipy-verapamil bound to the cavity lined by TMD2-

Q773 triggers conformation change to the inward-closed state via the conduit of the Q-

loop in NBD1. In reciprocal experiments, in which the transporter preferentially engaged 

drug via the Q132-lined cavity (by introduction of the Q773R mutation) both Q-loops 

were required to efficiently couple efflux of the bound Bodipy-verapamil to the ATP 

catalytic cycle. Together, these data place the Q-loops at the centre of the molecular 

mechanism where they control the coupling of the alternate access cycle of the TMDs 

with the ATP catalytic cycle of the NBDs. 

 

We envisage the role of the Q-loop in the transport cycle of an ABC exporter as follows. 

The drug-binding cavities of ABCB1 in the inward-open state are exposed to the inner 

leaflet of the membrane and its NBDs are completely separated as observed in crystals of 

apo MsbA, Abcb1a, CeAbcb1 and ABCB10, in a conformation made permissible by the 

direct contact of each TMD with both NBDs. ATP may well be bound by the F1-core of 

each NBD but the α-helical subdomain is not engaged (this is the case for ABCB10, and 

also for the maltose importer MalFGK2 in the absence of maltose and its periplasmic 
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binding protein MalE (49)). Drug accesses the inward-open ABCB1 from the inner leaflet 

of the membrane to occupy the cavities lined by Q132 or Q773. The interaction of drug 

with the TMDs triggers conformational change that is transmitted through one or both 

coupling helices (depending on which cavity is occupied and, most likely, on the 

chemistry of the drug/cavity interaction) to bring the two NBDs together. The coupling 

helix most likely flexes the Q-loop to allow the eponymous glutamine to hydrogen bond 

with the γ-phosphate of the ATP that is bound to the F1-core of the same domain (as 

observed in the high resolution structures of soluble bacterial NBDs (22-24)). This 

flexion also rotates the α-helical subdomain forward to hydrogen bond with the second 

ATP bound to the F1-core of the apposed NBD. In the absence of both Q-loop glutamines 

ABCB1 cannot prosecute this conformational change. If only one Q-loop glutamine is 

intact, the transporter presumably locks one ATP into position but not the second. The 

full or partial closure of the NBD:NBD interface (in the wild type and single Q-loop 

mutants, respectively) causes a further conformational change in which the TMD helices 

are re-orientated to close the entrance gate and open the exit gate to release the bound 

drug to the extracellular milieu. The inward-closed conformation is most likely 

autocatalytic (MalK, the isolated NBDs of the maltose importer will hydrolyse ATP 

constitutively in vitro (50)). In ABCB1, hydrolysis of the ATP γ-phosphate likely releases 

the Q-loop and disengages the two NBDs to permit return to the inward-open 

conformation. We speculate that only the ATP locked into position by a hydrogen bond 

to its intradomain Q-loop is hydrolysed. This may explain the reduction by half of the 

verapamil-stimulated ATPase activity of cells expressing the single Q-loop mutants 

without diminution of the Bodipy-verapamil efflux activity. It would also explain the 

pronounced phenotype of the single Walker B mutants, because in this case both ATPs 

would be hydrogen bonded to the two Q-loops and both may therefore need to be 

hydrolysed to disengage the NBDs.   
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Table I. In vitro ATPase data for NBD1-Q475A, NBD2-Q1118A, and wild-

type ABCB1.  

Values shown are the average of at least 4 independent experiments ± S.E.M. * p<0.05, 

*** p<0.001 versus wild-type ABCB1 using Student’s two-tailed t-test. P

a
P drug-stimulated 

V Bmax B versus wild-type. 

 

 

+Nicardipine (50μM) - Nicardipine Relative 

ATPase activitya 

(%) 
KBm
B

 (mM) 
VBmax

B

 

(nmol Pi/min/mg) 
KBm
B

 (mM) 
VBmax

B

 

(nmol Pi/min/mg) 

Wild-type 0.746 ± 0.22 1691 ± 228 0.327 ± 0.49 151 ± 54 100 

Q475A 2.37 ± 1.64 162 ± 70*** 0.284 ± 0.19 8.0 ± 1.7* 9.5 

Q1118A 2.34 ± 1.39 138 ± 51*** 0.573 ± 0.31 8.2 ± 1.7* 8.1 
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Table II. Cytosensor data for NBD1-Q475A, NBD2-Q1118A, 

Q475A/Q1118A and wild-type ABCB1.  

Values shown are the average of at least 3 independent experiments ± S.E.M. ** p<0.01, 

*** p<0.001 versus wild-type ABCB1 using Student’s two-tailed t-test. ND None 

detected. 

 

Mutant K1 (μM) 
V1  

(fold increase) 

V1  

(% wild-type) 
K2 (μM) 

V2 (Fold 

increase) 

Wild-type 0.56 ± 0.03 1.38 ± 0.01 100 23.05 ± 3.44 1.09 ± 0.01 

Q475A 0.91 ± 0.10*** 1.19 ± 0.02*** 50.2 26.54 ± 4.84 0.94 ± 0.02*** 

Q1118A 0.95 ± 0.17** 1.13 ± 0.02*** 35.6 84.81 ± 30.36*** 0.88 ± 0.06*** 

Q475A/Q1118A ND ND ND ND ND 
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Figure legends 
 

Figure 1. Structural data for ABC exporters.  

(A) A potential bellows-like mechanism of ABC exporters suggested by the structural 

studies. The inward-open conformation of Abcb1a is shown on the left (6). From the 

amino terminus: TMD1, yellow; NBD1, red; TMD2, blue; NBD2, cyan. The inward-

closed conformation of a homology model of human ABCB1 (51) is shown in the centre, 

and on the right rotated 90o on the Y-axis. The inward-closed conformation is based on 

the Sav1866 structure (7) with ATP modelled into the NBDs. The mechanism (15, 52, 53) 

is summarised in four steps (1) drug binds to the inward-open conformation from the inner 

leaflet of the bilayer. (2) This induces conformational change to allow the NBDs to close 

around two ATPs at the NBD:NBD interface. (3) The inward-closed state re-configures 

the drug-binding cavities such that they are now exposed extracellularly and 

simultaneously lowers the affinity for drug, which is released. (4) ATP hydrolysis, loss of 

phosphate (Pi) and ADP, restores the transporter to the inward-open state. (B) The 

verapamil binding cavities. The transmembrane α-helices of the inward-open 

conformation of Abcb1a from above, showing the modelled side chains of residues (red 

sticks) implicated in verapamil binding (54, 55), the prospective verapamil binding 

cavities (dashed red lines), and the conserved glutamines (numbered as for human 

ABCB1) that line the cavities and which when mutated to arginine inhibit binding to the 

adjacent cavity by electrostatic repulsion (spacefill orange and green). (C) Close-up view 

of coupling helix 2 of TMD1 (yellow) formed from the intracellular loop of 

transmembrane α-helices 4 and 5, as it contacts the cleft in NBD2 of the ABCB1 

homology model. The model (viewed from the position of NBD1) shows the Q-loop 

(pink) linking the α-helical subdomain (pale cyan) with the F1-core (cyan) of NBD2. The 

Q-loop also acts as conduit for interaction with the coupling helix. High-resolution 

structure data of bacterial NBDs suggest that the Q-loop glutamine (stick format) of 

ABCB1 will donate a hydrogen bond to the γ-phosphate of the ATP (stick format and 

coloured elementally) bound by the intradomain F1-core. Other TMD α-helices have been 

removed for clarity. (D) Top-down view of the NBD:NBD interface of the ABCB1 

homology model from the position of the TMDs. The F1-core (red) and α-helical 
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(salmon) subdomains of NBD1 are linked by the Q-loop (green). NBD2 is similarly 

shaded in cyan and pale cyan with the Q-loop in pink. The left hand image (cartoon 

format), and the right hand image (surface rendered) show the position of the Q-loops 

lining the base of the clefts that separate the F1-core and α-helical subdomains.  

 

Figure 2. Surface expression, conformational status, and effect on Bodipy-verapamil 

accumulation of mutant and wild-type ABCB1.  

(A) A representative example of a two-wavelength flow cytometry dotplot of HEK293T 

cells transfected with pCIneo-wtABCB1-6His. Cells that express wild-type ABCB1 are 

labelled by the 4E3 anti-ABCB1 antibody and also extrude Bodipy-verapmil. The 

populations are pseudo-coloured blue to red to reflect low to high cell density. (B) A 

representative histogram showing total ABCB1 expression (4E3 binding) on the surface 

of transiently-transfected HEK293T cells. (C) A representative histogram showing the 

effect of the wild-type and mutant ABCB1 on Bodipy-verapamil accumulation. (D) A 

representative histogram showing binding of the conformation-sensitive ABCB1 antibody 

UIC2 to transiently-transfected HEK293T cells. Colour-coding is the same for all 

histograms. 

 

Figure 3. Subcellular localisation of drug accumulation in HEK293T cells expressing wild 

type and mutant ABCB1.  

ABCB1 was detected with non-inhibitory antibody 4E3 (red fluorescence; left hand 

panels), Bodipy-verapamil fluoresces green (centre panels). The right hand panels show 

the merged image. Wild-type ABCB1 is highly active and exports Bodipy-verapamil from 

the cell such that these cells are red but not green (upper panels). Non-expressing cells 

accumulate Bodipy-verapamil intracellularly. The Q475A/Q1118A mutant binds Bodipy-

verapamil in the plasma membrane but cannot efflux it, thus drug accumulates in the 

plasma membrane of cells expressing the double Q-loop mutant ABCB1 and also in 

intracellular compartments (middle panels). In contrast, the catalytically inactive Walker 

B E1201Q mutant is trapped in the inward-closed conformation that has a low affinity for 

drug and these cells accumulate Bodipy-verapamil intracellularly but not in the plasma 
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membrane (lower panels). Fields of view were selected to include a proportion of non-

transfected cells in each panel for comparison. 

 

Figure 4. Purification and ATPase activity of lipid-reconstituted wild-type and mutant 

human ABCB1.  

(A) SDS-polyacrylamide gel stained with colloidal blue, showing total protein from each 

fraction. Lane 1, crude membrane preparation (0.4% of total volume); lane 2, solubilised 

membrane preparation (0.1% of total volume); lane 3, unbound protein in the NiNTA 

resin flow-through (0.1% of total volume); lanes 4-6, washes 1-3 (20mM imidazole; 2.5% 

of total volume); lane 7, wash 4 (30mM imidazole; 2.5% of total volume); lane 8, wash 5 

(35mM imidazole; 2.5% of total volume); lane 9, elution 0 (buffer pH change, 2mM                                 

imidazole; 2.5% of total volume); lanes 10-12, elutions 1-3 (120mM imidazole; 1.5% of 

total volume). (B) ATPase activity of wild-type and mutant ABCB1 in reconstituted 

proteoliposomes, as a function of increasing ATP concentration. Drug-stimulated ATPase 

activity was plotted as a function of ATP concentration using the Michaelis-Menten 

equation. (C) The single Q-loop mutants with a re-scaled y-axis to show the drug-

stimulation of their ATPase activities. 

 

Figure 5. Drug-stimulated ATPase activity of wild-type and mutant ABCB1 measured in 

live cells. 

(A) Extracellular acidification rates (ECARs) of HEK293T cells expressing wild-type 

(red), NBD1-Q475A (purple), or NBD2-Q1118A (orange) ABCB1, and mock-transfected 

cells (blue). Plots are shown as a function of time, with increasing verapamil 

concentration indicated above each experimental peak. (B-E) ECAR data was applied to a 

kinetic model based upon a modified Michaelis-Menten equation, described in the 

Materials and Methods. Representative plots from a single experiment, performed in 

duplicate with error bars indicating standard deviation, are shown using cells expressing 

(B) wild-type, (C) NBD1-Q475A, (D) NBD2-Q1118A, and (E) Q475A/Q1118A ABCB1. 

 

Figure 6. Drug transport activity of wild-type and mutant ABCB1.  
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HEK293T cells expressing ABCB1 were incubated with Bodipy-verapamil for 30min, 

before washing and FACS analysis. Values are calculated as the ratio of FL-1 (drug) 

fluorescence between ABCB1 expressing and non-expressing (untransfected cells) within 

the same sample. Each bar corresponds to the mutation(s) detailed in table below the 

graph. White bars indicate single/double NBD Q-loop mutants; grey, single/double TMD 

mutants; striped bars, double NBD/TMD mutants; black, wild-type; calalytically inactive 

Walker B mutants NBD1-E556Q and NBD2-E1201Q are indicated and serve as negative 

controls. Values shown are the average of at least 5 independent experiments ± S.E.M. † 

cells expressing the Q475A/Q1118A mutant ABCB1 accumulate more Bodipy-verapamil 

than the untransfected cells giving a ratio of less than 1.  * p<0.05, *** p<0.001, ns, not 

significant versus wild-type using one-way ANOVA with Student-Newman-Keuls post-

test. 
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Figure 5. 
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Supplementary Figure 1. The double Q-loop mutant Q475A/Q1118A imports 

Bodipy-verapamil. Dotplot from two-colour flow cytometry experiment (see 

methods and materials in the main text for details), showing the relationship 

between ABCB1 surface expression (4E3 labelling) and Bodipy-verapamil 

accumulation. Each dot represents an individual cell. In the population of cells 

expressing wild-type ABCB1 (red, top left panel) increasing surface labelling 

with 4E3 (and so increasing ABCB1 expression) correlates with decreasing 

accumulation of Bodipy-verapamil (the population to the bottom right of the plot 

are non-transfected cells within the population). Cells expressing the 

catalytically inactive Walker B mutant E1201Q (orange, top centre panel) 

accumulate Bodipy-verapamil to the same level as mock-transfected (or non-

expressing cells within the E1201Q transfection experiment). In contrast, cells 

expressing the double Q-loop mutant Q475A/Q1118A (green, top right panel) 

accumulate more Bodipy verapamil than cells expressing the E1201Q mutant, 

and the level of accumulation goes up with increasing expression of 

Q475A/Q1118A. Direct comparison of the level of Bodipy-verapamil 

accumulation of cells expressing Q475A/Q1118A (green), with mock-transfected 

cells (blue) and cells expressing E1201Q (orange) is given in the overlay plots to 

the bottom left and bottom right, respectively. 
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Supplementary Figure 2. Purified wild-type and mutant ABCB1 was 

reconstituted into liposomes with equal efficiency. Proteoliposomes containing 

(A) wild-type, (B) NBD1-Q475A, (C) NBD2-Q1118A, and (D) Q475A/Q1118A 

ABCB1 were separated using a sucrose density gradient (0-30%). Protein 

content of each fraction was visualised using SDS-PAGE, followed by colloidal 

blue staining (top panels, arrows indicate ABCB1). Distribution of 3H-

phosphatidylcholine between each fraction was determined using liquid 

scintillation counting (bar graphs). Co-fractionation of protein and lipid shows 

efficient incorporation of wild-type and mutant ABCB1 into liposomes. 
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Supplementary Figure 3. TMD mutations Q132R and Q773R do not 

affect the level of ABCB1 surface expression.  

HEK293T cells transiently expressing mutant and wild-type ABCB1 were 

labelled with saturating concentrations of the ABCB1-specific antibody 4E3 to 

label total ABCB1 (see materials and methods in the main text for details). 

 

 




