3,309 research outputs found

    CO mapping of the Orion molecular cloud: The influence of star formation on cloud structure

    Get PDF
    Regions of massive star formation have long been believed to have a profound influence on the structure of their surrounding molecular clouds. The ways in which massive star formation has altered the structure and kinematics of the Orion Molecular Cloud are discussed. The data to be discussed consists of a large scale map of the CO J=1-0 emission from approximately 3 square degrees of OMC-1. During 1985, the Five College Radio Astronomy Observatory 14M antenna was used to map a 2 deg x 1 deg region centered on alpha(1950) = 5(h)33(m)00(s) delta(1950) = -5 deg 30 min. The region mapped in 1985 covers the well known HII regions M42, M43, and NGC1977, and the CO map contains abundant evidence of the interaction between these regions and the molecular cloud. Indeed, the global structure of the cloud appears to have been strongly influenced by the continuous formation of massive stars within the cloud. Individual instances of some of these features are discussed. There appear to be two classes of features which are indicative of this interaction: CO bright rims and CO holes. During 1986, we have undertaken further mapping of OMC-1 to the south of the region covered by the 1985 map. This portion of the cloud contains significant regions of star formation, but O star formation has not occured and large HII regions have not developed to alter the appearance of the cloud. A detailed map of this region is thus an opportunity to view the structure of the molecular cloud before it has been altered by massive star formation. Preliminary analysis of data obtained in this region suggests that the structure and kinematics of the southern portion of the Orion cloud are indeed dramatically different from those of the region previously mapped. Comparison of the two regions thus supports models of the development of structure in molecular clouds through interaction with the HII regions formed within them

    Microstructure Effects on Daily Return Volatility in Financial Markets

    Full text link
    We simulate a series of daily returns from intraday price movements initiated by microstructure elements. Significant evidence is found that daily returns and daily return volatility exhibit first order autocorrelation, but trading volume and daily return volatility are not correlated, while intraday volatility is. We also consider GARCH effects in daily return series and show that estimates using daily returns are biased from the influence of the level of prices. Using daily price changes instead, we find evidence of a significant GARCH component. These results suggest that microstructure elements have a considerable influence on the return generating process.Comment: 15 pages, as presented at the Complexity Workshop in Aix-en-Provenc

    Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    Full text link
    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.Comment: 11 pages, 4 figures. Accepted for publication in MNRA

    DataWarp: Building Applications which Make Progress in an Inconsistent World

    No full text
    The usual approach to dealing with imperfections in data is to attempt to eliminate them. However, the nature of modern systems means this is often futile. This paper describes an approach which permits applications to operate notwithstanding inconsistent data. Instead of attempting to extract a single, correct view of the world from its data, a DataWarp application constructs a collection of interpretations. It adopts one of these and continues work. Since it acts on assumptions, the DataWarp application considers its recent work to be provisional, expecting eventually most of these actions will become definitive. Should the application decide to adopt an alternative data view, it may then need to void provisional actions before resuming work. We describe the DataWarp architecture, discuss its implementation and describe an experiment in which a DataWarp application in an environment containing inconsistent data achieves better results than its conventional counterpart

    Validation of magnetophonon spectroscopy as a tool for analyzing hot-electron effects in devices

    Get PDF
    It is shown that very high precision hot-electron magnetophonon experiments made on n+n−n+-GaAs sandwich device structures which are customized for magnetoresistance measurements can be very accurately modeled by a new Monte Carlo technique. The latter takes account of the Landau quantization and device architecture as well as material parameters. It is proposed that this combination of experiment and modeling yields a quantitative tool for the direct analysis of spatially localized very nonequilibrium electron distributions in small devices and low dimensional structures

    State of the art in the determination of trace elements in seawater: a worldwide proficiency test

    Get PDF
    This manuscript presents the results of the International Measurement Evaluation Programme 40 (IMEP-40) study, a proficiency test (PT) which was organised to assess the worldwide performance of laboratories for the determination of trace elements in seawater. This PT supports the implementation of the European Union Water Framework Directive 2000/60/EC, which aims at achieving a long-term high level protection of the aquatic environment, covering lakes, ground water and coastal waters. Forty-six participants reported results. The test item was seawater containing the trace elements As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn. The trace elements in the test item were present in very low concentrations to mimic natural levels. The results of the participants were rated with z and zeta (zeta) scores in accordance with ISO 13528 and ISO 17043. The standard deviation for proficiency assessment, , was set at 25 % of the respective assigned values for the 12 measured elements based on previous experience with similar PTs. The low levels of the trace elements combined with the high salt concentration of the seawater made the measurements challenging. Many laboratories were unable to detect or quantify the elements and reported "lower than X" values. The percentage of satisfactory performances (expressed as z scores) ranged from 41 % (Cr, Fe) to 86 % (Mo). The PT study showed that the use of proper standard methods, like ISO 17294-2, and sensitive techniques, like inductively coupled plasma mass spectrometry (ICP-MS), contributed to performing well in this PT round

    First Passage Properties of the Erdos-Renyi Random Graph

    Full text link
    We study the mean time for a random walk to traverse between two arbitrary sites of the Erdos-Renyi random graph. We develop an effective medium approximation that predicts that the mean first-passage time between pairs of nodes, as well as all moments of this first-passage time, are insensitive to the fraction p of occupied links. This prediction qualitatively agrees with numerical simulations away from the percolation threshold. Near the percolation threshold, the statistically meaningful quantity is the mean transit rate, namely, the inverse of the first-passage time. This rate varies non-monotonically with p near the percolation transition. Much of this behavior can be understood by simple heuristic arguments.Comment: 10 pages, 9 figures, 2-column revtex4 forma

    Star Formation in Bright Rimmed Clouds. I. Millimeter and Submillimeter Molecular Line Surveys

    Get PDF
    We present the results of the first detailed millimeter and submillimeter molecular line survey of bright rimmed clouds, observed at FCRAO in the CO (J=1-0), C18O (J=1-0), HCO+ (J=1-0), H13CO+ (J=1-0), and N2H+ (J=1-0) transitions, and at the HHT in the CO (J=2-1), HCO+ (J=3-2), HCO+ (J=4-3), H13CO+ (J=3-2), and H13CO+ (J=4-3) molecular line transitions. The source list is composed of a selection of bright rimmed clouds from the catalog of such objects compiled by Sugitani et al. (1991). We also present observations of three Bok globules done for comparison with the bright rimmed clouds. We find that the appearance of the millimeter CO and HCO+ emission is dominated by the morphology of the shock front in the bright rimmed clouds. The HCO+ (J=1-0) emission tends to trace the swept up gas ridge and overdense regions which may be triggered to collapse as a result of sequential star formation. Five of the seven bright rimmed clouds we observe seem to have an outflow, however only one shows the spectral line blue-asymmetric signature that is indicative of infall, in the optically thick HCO+ emission. We also present evidence that in bright rimmed clouds the nearby shock front may heat the core from outside-in thereby washing out the normally observed line infall signatures seen in isolated star forming regions. We find that the derived core masses of these bright rimmed clouds are similar to other low and intermediate mass star forming regions.Comment: 67 pages, including 35 figures and 6 tables. Accepted for publication in ApJ. Version with embedded full-resolution figures available at http://www.astro.umass.edu/~devries/brc1

    Velocity-resolved [CII] emission and [CII]/FIR Mapping along Orion with Herschel

    Get PDF
    We present the first 7.5'x11.5' velocity-resolved map of the [CII]158um line toward the Orion molecular cloud-1 (OMC-1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41alpha hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [CII] luminosity (~85%) is from the extended, FUV-illuminated face of the cloud G_0>500, n_H>5x10^3 cm^-3) and from dense PDRs (G_0~10^4, n_H~10^5 cm^-3) at the interface between OMC-1 and the HII region surrounding the Trapezium cluster. Around 15% of the [CII] emission arises from a different gas component without CO counterpart. The [CII] excitation, PDR gas turbulence, line opacity (from [13CII]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the [CII]/FIR and FIR/M_Gas ratios and show that [CII]/FIR decreases from the extended cloud component (10^-2-10^-3) to the more opaque star-forming cores (10^-3-10^-4). The lowest values are reminiscent of the "[CII] deficit" seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing [CII]/FIR ratio correlates better with the column density of dust through the molecular cloud than with FIR/M_Gas. We conclude that the [CII] emitting column relative to the total dust column along each line of sight is responsible for the observed [CII]/FIR variations through the cloud.Comment: 21 pages, 17 figures. Accepted for publication in the Astrophysical Journal (2015 August 12). Figures 2, 6 and 7 are bitmapped to lower resolution. This is version 2 after minor editorial changes. Notes added after proofs include
    corecore