125 research outputs found

    Mechanisms and roles of the RNA-based gene silencing

    Get PDF
    RNA silencing is a remarkable type of gene regulation. This process has been found to occur in many different organisms such as plants (co-suppression), fungi (quelling), and animals (RNA interference; RNAi). Double-stranded RNA (dsRNA) is a potent trigger in RNA silencing mechanisms operating in a wide range of organisms. This mechanism recognizes dsRNA and processes them into small 21-25nt RNAs (smRNAs). Small RNAs can guide post-transcriptional degradation of complementary messenger RNAs and in plants, transcriptional gene silencing is occurred by methylation of homologous DNA sequences. In plants, it serves as an antiviral defense, and many plant viruses encode suppressors of silencing such as helper component-proteinase of potyviruses (HC-Pro) and the p25 protein encoded by potato virus X (PVX). HC-Pro acts by preventing accumulation of smRNAs that provide specificity determinant for homologous RNA degradation, but p25 viral protein acts by targeting the mobile silencing signal. The encouraging view is that RNA silencing is part of a sophisticated network of interconnected pathways for cellular defense and development and that it may become a powerful tool to manipulate gene expression experimentally

    Biofield Treatment: An Alternative Approach to Combat Multidrug-Resistant Susceptibility Pattern of Raoultella ornithinolytica

    Get PDF
    International audienceRaoultella ornithinolytica is belongs to the family of Enterobacteriaceae, a Gram-negative encapsulated aerobic bacillus associated with bacteremia and urinary tract infections. As biofield therapy is increasingly popular in biomedical heath care, so present study aimed to evaluate the impact of Mr. Trivedi’s biofield treatment on antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical study, and biotype number of multidrug resistant strain of R. ornithinolytica. Clinical sample of R. ornithinolytica was divided into two groups i.e. control and biofield treated which were analyzed for the above parameters using MicroScan Walk-Away® system on day 10 after treatment. Antimicrobial sensitivity assay results showed a significant increase (60.71%) in sensitivity pattern of antimicrobials i.e. changed from resistant to susceptible while 10.71% of tested antimicrobials changed from intermediate to susceptible as compared to control. MIC results showed a significant decrease in MIC values of 71.88% tested antimicrobials as compared to control.Biochemical reaction study showed 15.15% alteration in different biochemical such as cetrimide, cephalothin, kanamycin, and ornithine after biofield treatment as compared to control. A significant change in biotype number (7775 4370) was also observed with organism identified as Klebsiella oxytoca after biofield treatment as compared to control (7775 5372). Overall results conclude that biofield treatment could be used as complementary and alternative treatment strategy against multidrug resistant strain of R. ornithinolytica with respect to improve the sensitivity and reduce the MIC values of antimicrobials. Hence, it is assumed that biofield treatment might be a suitable cost effective treatment strategy in near future, which could have therapeutic value in patients suffering from multidrug resistant pathogens

    Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment

    Get PDF
    International audienceKlebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospital-acquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. C (control), T1 (treatment, revived); and T2 (treatment, lyophilized). Subsequently, groups T1 and T2 were received biofield treatment and control group was remained as untreated. The antimicrobial sensitivity results showed 3.33% and 6.67% alteration in antimicrobials susceptibility in group T1 cells on day 5 and 10, respectively, and 3.33% alteration in antimicrobials susceptibility was observed in group T2 cells on day 10 as compared to control. The sensitivity patterns of cefazolin were changed from resistant (R) to intermediate (I) on day 5, and resistance (R) to susceptible (S) on day 10, in T1 cells of K. oxytoca. The MIC value of cefazolin was decreased by 2-fold in group T1 on day 10 as compared to control. The biofield treated K. oxytoca exhibited the changes in biochemical reactions about 3.03% and 15.15% of total tested biochemicals in group T1 cells on day 5 and 10, respectively as compared to control. The biotype number of K. oxytoca was altered in biofield treated group and organism identified as Raoultella ornithinolytica in T1 on day 10 as compared to control, which is the prominent finding of this study. These changes were found in treated bacteria that might be due to some alteration happened in metabolic/enzymatic pathway and/or at genetic level of K. oxytoca. Based on these data, it is speculated that biofiled treatment could be an alternative approach that can improve the effectiveness of the existing antimicrobials against the resistant pathogens

    Spectroscopic Characterization of Chloramphenicol and Tetracycline: An Impact of Biofield Treatment

    Get PDF
    International audienceObjective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. The present study was aimed to evaluate the impact of biofield treatment for spectroscopic characterization of chloramphenicol and tetracycline using FT-IR and UV-Vis spectroscopy.Methods: The study was performed in two groups (control and treatment) of each antibiotic. The control groups remained as untreated, and biofield treatment was given to treatment groups.Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. It may be due to increase of conjugation effect in NO2 group, and increased force constant of C=O bond. As a result, stability of both NO2 and C=O groups might be increased in treated sample as compared to control. FT-IR spectrum of treated tetracycline showed the downstream shifting of aromatic C-H stretching from 3085-3024 cm-1 to 3064-3003 cm-1 and C=C stretching from 1648-1582 cm-1 to 1622-1569 cm-1 and up shifting of C-N stretching from 965 cm-1 to 995 cm-1. It may be due to enhanced conjugation effect in tetracycline, and increased force constant of C-N (CH3) bond of tetracycline as compared to control. The results indicated the enhanced stability of treated tetracycline as compared to control. UV-Vis spectra of biofield treated chloramphenicol and tetracycline showed the similar lambda max (λmax) to their respective control. It revealed that the chromophore groups of both antibiotics remained same as control after the biofield treatment.Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugation effect after biofield treatment, the chemical stability of both the drugs might be increased as compared to control

    Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam

    Get PDF
    International audienceParacetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. The control groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectral properties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopic techniques. FT-IR data of paracetamol showed N-H amide II bending peak in biofield treated paracetamol, which was shifted to lower wavenumber (1565 to 1555 cm-1) as compared to control. Further, the intensity of vibrational peaks in the range of 1171-965 cm-1 (C-O and C-N stretching) were increased in treated sample of paracetamol as compared to control. Similarly, the FT-IR data of piroxicam (treated) showed increased intensity of vibrational peaks at 1628 (amide C=O stretching), 1576-1560 cm-1 (C=C stretching) with respect to control peaks. Furthermore, vibrational peak of C=N stretching (1467 cm-1) was observed in biofield treated piroxicam. This peak was not observed in control sample, possibly due to its low intensity. Based on FT-IR data, it is speculated that bond length and dipole moment of some bonds like N-H (amide), C-O, and C-N in paracetamol and C=O (amide), C=N, and C=C in piroxicam might be changed due to biofield treatment. The UV spectrum of biofield treated paracetamol showed the shifting in wavelength of UV absorption as 243→248.2 nm and 200→203.4 nm as compared to control. Likely, the lambda max (λmax) of treated piroxicam was also shifted as 328 →345.6 nm, 241→252.2 nm, and 205.2→203.2 nm as compared to control. Overall results showed an impact of biofield treatment on the spectral properties of paracetamol and piroxicam

    Mechanisms and roles of the RNA-based gene silencing

    Full text link

    Influence of the Biofield Energy Therapy on the Physico-chemical and Thermal Properties of Sulfamethoxazole

    Get PDF
    Sulfamethoxazole is an antibiotic, which inhibits the bacteria by interfering in its folic acid synthesis mechanism. The objective of this study was to analyze the Trivedi Effect®-Consciousness Energy Healing Treatment on the phys-icochemical and thermal properties of sulfamethoxazole by using modern analytical techniques. The sulfamethoxaz-ole sample was classified as control and treated samples. The control sample did not receive the Biofield Treatment, while the treated sample received the Biofield Treatment remotely by a renowned Biofield Energy Healer, Dahryn Trivedi. The particle sizes of the treated sample were significantly reduced by 7.99% (d10), 3.05% (d50), 3.80% (d90), and 3.03%{D(4,3)}; whereas, the specific surface area of the particles was increased by 5.19% in the treated sample compared to the control sample. The PXRD peak intensities and crystallite sizes were altered ranging from -70.86% to 52.36% and -6.01% to 75.34%, respectively; whereas the average crystallite size was significantly increased by 27.28% in the treated sulfamethoxazole compared with the control sample. The sample residual amount and maximum thermal degradation temperature were increased by 2.13% and 4.21%, respectively, in the treated sample compared to the con-trol sample. The decomposition temperature and latent heat of decomposition were increased by 3.26% and 19.36%, respectively, in the treated sample compared to the untreated sample. The Biofield Treated sulfamethoxazole might con-vert to a novel polymorph of the drug, with reduced particle size, increased surface area, and improved thermal stability. This can be helpful in improving the solubility, bioavailability, and stability of the sulfamethoxazole and would be more efficacious for the treatment of infections in the ear, urinary tract infections, traveler’s diarrhoea, bronchitis, shigellosis, and pneumonia, etc. Source: https://www.trivedieffect.com/science/influence-of-the-biofield-energy-therapy-on-the-physico-chemical-and-thermal-properties-of-sulfamethoxazole/ https://www.ommegaonline.org/article-details/Influence-of-the-Biofield-Energy-Therapy-on-the-Physicochemical-and-Thermal-Properties-of-Sulfamethoxazole/196

    Gas Chromatography-Mass Spectrometric Analysis of Isotopic Abundance of 13C, 2H, and 18O in Biofield Energy Treated p-tertiary Butylphenol (PTBP)

    Get PDF
    International audiencep-tert-Butyphenol (PTBP) is a phenolic monomer used in the synthesis of numerous industrially useful chemicals. The current research work aimed to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM and PM+2/PM in PTBP using gas chromatography - mass spectrometry (GC-MS). The sample, PTBP was distributed into two parts - one part was designated as control PTBP and another part was considered as biofield energy treated PTBP. The biofield energy treatment was achieved through unique biofield energy transmission process by Mr. Trivedi (also known as The Trivedi Effect®). T1, T2, T3, and T4 were indicated to the different time interval analysis of the biofield treated PTBP. The GC-MS spectra of the both control and biofield treated PTBP showed the presence of molecular ion peak [M+] at m/z 150 (calculated 150.10 for C10H14O) along with eight major fragmented peaks at m/z 135, 107, 95, 91, 77, 65, 41, and 39, which might be due to C10H15+, C7H7O+ or C8H11+, C6H7O+, C7H7+, C6H5+, C5H5+, C3H5+, and C3H3••+ ions, respectively. The relative intensities of the parent molecule and other fragmented ions of the biofield treated PTBP were altered as compared to the control PTBP. The percentage in the isotopic abundance ratio of PM+1/PM was enhanced in the biofield treated PTBP at T2, T3 and T4 by 1.60%, 3.57%, and 120.13%, respectively while it was decreased by 4.14% in the treated sample at T1 with respect to the control PTBP. Consequently, the isotopic abundance ratio of PM+2/PM was increased in the biofield treated PTBP at T1, T3, and T4 by 1.28%, 2.56%, and 123.08%, respectively with respect to the control sample. On the other hand, it was reduced in the biofield treated sample at T2 by 1.28% as compared to the control PTBP. Concisely, 13C, 2H, and 17O contributions from (C10H14O)+ to m/z 151 and 18O contribution from (C10H14O)+ to m/z 152 in the biofield treated PTBP were changed with respect to the control sample and was found to have time dependent effect. The biofield energy treated PTBP might display isotope effects such as different physicochemical and thermal properties, rate of the reaction, selectivity and binding energy due to the changed isotopic abundance ratio as compared to the control sample. Biofield treated PTBP could be valuable for the designing new chemicals and pharmaceuticals through using its kinetic isotope effects

    Agronomic Characteristics, Growth Analysis, and Yield Response of Biofield Treated Mustard, Cowpea, Horse Gram, and Groundnuts

    Get PDF
    Mustard, cowpea, horse gram, and groundnuts are the seasonal pulse crops used as food and fodder in many regions of the world. In the present study, the impact of biofield energy treatment on mustard, cowpea, horse gram, and groundnuts were studied with respect to overall growth, yield, and its related yield attributes. Seeds of each crop was selected and divided in two groups, i.e. control and treated. The treated group of each seed crops was subjected to Mr. Trivedi biofield energy treatment, and were plotted in the separate fields. The plot with untreated seeds were provided with all the precautionary measures such as pesticides, fungicides and organic additives, while no such measures were taken in the plot with treated seeds. Both group of crops were further analyzed and compared for growth, yield, and yield attributes. Further, the effect of biofield treatment was also evaluated on horse gram using Random Amplified Polymorphic DNA (RAPD) analysis in order to determine their epidemiological relatedness and genetic characteristics. The results suggest that the percentage increase in yield was maximum in mustard (500%), followed by horse gram (105%), cow pea (52%), and groundnut (44%) as compared with their control. However, improved plant height, overall growth, yield of seeds, plants were free from any diseases and pest were observed in treated group as compared with its respective control. RAPD analysis using eight primers results in polymorphism and the percentage of true polymorphism observed between control and treated samples of horse gram seed sample with an average value of 53%. The overall results suggested that Mr. Trivedi’s biofield energy treatment has a significant impact on mustard, cowpea, horse gram, and groundnuts, which might be used as a better alternative approach to increase the yield of crop as compared with the synthetic chemicals. https://www.trivedieffect.com/science/agronomic-characteristics-growth-analysis-and-yield-response-of-biofield-treated-mustard-cowpea-horse-gram-and-groundnuts http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=116&doi=10.11648/j.ijgg.20150306.1

    Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    Get PDF
    International audienceBarium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the biofield treatment has enhanced the density upto 1.38% in barium titanate as compared to control. The FT-IR spectra showed that the stretching and bending vibrations of Ti-O bond in treated BaTiO3 were shifted towards lower frequency as compared to control. The bond length was substantially increased by 0.72 % in treated BaTiO3 as compared to control. The ESR spectra of control and treated BaTiO3 sample showed the g-factor of 2.0; and biofield treatment has substantially changed the width and height of ESR signal in treated BaTiO3 as compared to control. These observations revealed that biofield treatment has significantly altered the crystal structure, lattice strain, and bond vibration of barium titanate
    • …
    corecore