7 research outputs found

    A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress

    Get PDF
    Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine- imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies

    Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress.

    No full text
    Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies

    Self report assessment of stress perception and emotional strain in female medical students during their final exam.

    No full text
    <p>Graphs (a)-(f) show self-report data assessed at the following points in time (T): baseline, twelve weeks prior to the exam and before the learning period started (1); within the first and second week after the written part of the exam and before test results were released (2); and twelve weeks after the completion of the exam (3). Graph (g) shows cortisol measurements in saliva samples taken on the day prior to T2. Samples were processed to assess diurnal cortisol secretion as described below in the Materials and Methods section. (a)-(g): N = 18 in exam group, N = 15 in comparison group. Mean values and SEM are shown. Mann Whitney U tests were used to examine differences between group means at distinct points in time, Kruskal-Wallis tests with post-hoc Dunn's tests corrected for multiple comparisons to examine differences between different points in time within one group. P-values < 0.1 –one asterix in brackets, <0.05 –one asterix, < 0.01—two asterix, < 0.001—three asterix.</p

    Assessment of immune mediators in female medical students during their final exam.

    No full text
    <p>(a)-(e): N = 18 in exam group, N = 15 in comparison group. Mann Whitney U tests were used to examine differences between group means at distinct points in time, Kruskal-Wallis tests with post-hoc Dunn's tests corrected for multiple comparisons to examine differences between different points in time within one group. Mean values and SEM are shown. P-values < 0.1 –one asterix in brackets, <0.05 –one asterix, < 0.01—two asterix.</p

    Assessment of stress perception and acquisition of samples to assess biological outcomes in exam versus comparison students.

    No full text
    <p>Note that T2 took place within the first two weeks after the written and before the oral part of the exam. A salivary cortisol profile was obtained the day prior to T2 to confirm altered cortisol diurnal profile in the exam group. In addition to assessing subacute stress perception, participants were assessed for mental health, other parameters of psychological strain and coping/resources, to ensure good health and resourcefulness. Abbreviations: <b>COPE</b>—coping strategies, <b>DHUS</b>—Daily Hassles and Uplifts Scales (Kanner et al., 1981), <b>HADS</b>—Hospital Anxiety and Depression Scale, <b>IES</b>—Impact of Event Scale, <b>PSQ</b>—Perceived Stress Questionnaire, <b>SOMS</b>—Screening for Somatoform Symptoms, <b>TICS</b>—Trier Inventory for the Assessment of Chronic Stress.</p
    corecore