9 research outputs found

    Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria

    Get PDF
    Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads

    A Super Resolution Probe to Monitor HNO Levels in the Endoplasmic Reticulum of Cells

    Get PDF
    Selective detection of nitroxyl (HNO), which has recently been identified as a reactive nitrogen species, is a challenging task. We report a BODIPY-based luminescence ON reagent for detection of HNO in aqueous solution and in live RAW 264.7 cells, based on the soft nucleophilicity of the phosphine oxide functionality towards HNO. The probe shows high selectivity to HNO over other reactive oxygen/nitrogen and sulphur species. Luminescence properties of the BODIPY based chemodosimetric reagent make it an ideal candidate for use as a reagent for super resolution structured illumination microscopy. The viability of the reagent for biological in-vivo imaging application was also confirmed using Artemia as a model

    Mitochondria Targeting Non-isocyanate-based Polyurethane Nanocapsules for Enzyme-Triggered Drug Release

    Get PDF
    Surface engineering of nanocarriers allows fine tuning of their interactions with biological organisms, potentially forming the basis of devices for the monitoring of intracellular events or for intracellular drug delivery. In this context, biodegradable nanocarriers or nanocapsules capable of carrying bioactive molecules or drugs into the mitochondrial matrix could offer new capabilities in treating mitochondrial diseases. Nanocapsules with a polymeric backbone that undergoes programmed rupture in response to a specific chemical or enzymatic stimulus with subsequent release of the bioactive molecule or drug at mitochondria would be particularly attractive for this function. With this goal in mind, we have developed biologically benign nanocapsules using polyurethane-based, polymeric backbone that incorporate repetitive ester functionalities. The resulting nanocapsules are found to be highly stable and monodispersed in size. Importantly, a new non-isocyanate route is adapted for the synthesis of these non-isocyanate polyurethane nanocapsules (NIPU). The embedded ester linkages of these capsules' shells have facilitated complete degradation of the polymeric backbone in response to a stimulus provided by an esterase enzyme. Hydrophilic payloads like rhodamine or doxorubicin can be loaded inside these nanocarriers during their synthesis by an interfacial polymerization reaction. The post-grafting of the nanocapsules with phosphonium ion, a mitochondria-targeting receptor functionality, has helped us achieve the site-specific release of the drug. Co-localization experiments with commercial mitotracker green as well as mitotracker deep red confirmed localization of the cargo in mitochondria. Our in-vitro studies confirm that specific release of doxorubicin within mitochondria causes higher cytotoxicity and cell death compared to free doxorubicin. Endogenous enzyme triggered nanocapsule rupture and release of the encapsulated dye is also demonstrated in a zebrafish model. The results of this proof-of-concept study illustrate that NIPU nanocarriers can provide a site-specific delivery vehicle and improve the therapeutic efficacy of a drug or be used to produce organelle-specific imaging studies

    Homo- and Heteroleptic Phototoxic Dinuclear Metallo-Intercalators Based on Ru II (dppn) Intercalating Moieties: Synthesis, Optical and Biological Studies

    Get PDF
    Using a new mononuclear “building block,” for the first time, a dinuclear RuII(dppn) complex and a heteroleptic system containing both RuII(dppz) and RuII(dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are 1O2 sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence “switch on” DNA light-switch effect. In both cisplatin sensitive and resistant human ovarian carcinoma lines the dinuclear complexes show enhanced uptake compared to their mononuclear analogue. Thanks to a favorable combination of singlet oxygen generation and cellular uptake properties all three of the new complexes are phototoxic and display potent activity against chemotherapeutically resistant cells

    Phenazine cations as anticancer theranostics

    Get PDF
    The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads

    Multimodal super-resolution optical microscopy using a transition metal-based probe provides unprecedented capabilities for imaging both nucle-ar chromatin and mitochondria

    Get PDF
    Detailed studies on the live cell uptake properties of a dinuclear membrane permeable permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ~20 μM the complex images nuclear DNA. Since the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two col-our, 2C-SIM; and STED and 3D-STED both in fixed and live cell. In particular, due to its vastly improved photostability compared to conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution

    Making the right link to theranostics : the photophysical and biological properties of dinuclear Ru^II-Re^I dppz complexes depend on their tether

    Get PDF
    The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions

    From chemotherapy to phototherapy – changing the therapeutic action of a metallo-intercalating RuII-ReI luminescent system by switching its sub-cellular location

    Get PDF
    The synthesis of a new heterodinuclear ReIRuII metallointercalator containing RuII(dppz) and ReI(dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII(dppz)/ReI(dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII(dppz)/ReI(dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action
    corecore