1,049 research outputs found

    Tracking Cryptic SARS-CoV-2 Lineages Detected in NYC Wastewater

    Get PDF
    Tracking SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To monitor New York City (NYC) for the presence of novel variants, we deep sequence most of the receptor binding domain coding sequence of the S protein of SARS-CoV-2 isolated from the New York City wastewater. Here we report detecting increasing frequencies of novel cryptic SARS-CoV-2 lineages not recognized in GISAID’s EpiCoV database. These lineages contain mutations that had been rarely observed in clinical samples, including Q493K, Q498Y, E484A, and T572N and share many mutations with the Omicron variant of concern. Some of these mutations expand the tropism of SARS-CoV-2 pseudoviruses by allowing infection of cells expressing the human, mouse, or rat ACE2 receptor. Finally, pseudoviruses containing the spike amino acid sequence of these lineages were resistant to different classes of receptor binding domain neutralizing monoclonal antibodies. We offer several hypotheses for the anomalous presence of these lineages, including the possibility that these lineages are derived from unsampled human COVID-19 infections or that they indicate the presence of a non-human animal reservoir

    Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis

    Get PDF
    Hydrogen cyanide is readily detected in the headspace above Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis (CF) patients with chronic (P. aeruginosa) infection. We investigated if exhaled breath HCN is an early marker of P. aeruginosa infection. 233 children with CF who were free from P. aeruginosa infection were followed for 2 years. Their median (interquartile range) age was 8.0 (5.0–12.2) years. At each study visit, an exhaled breath sample was collected for hydrogen cyanide analysis. In total, 2055 breath samples were analysed. At the end of the study, the hydrogen cyanide concentrations were compared to the results of routine microbiology surveillance. P. aeruginosa was isolated from 71 children during the study with an incidence (95% CI) of 0.19 (0.15–0.23) cases per patient-year. Using a random-effects logistic model, the estimated odds ratio (95% CI) was 3.1 (2.6–3.6), which showed that for a 1- ppbv increase in exhaled breath hydrogen cyanide, we expected a 212% increase in the odds of P. aeruginosa infection. The sensitivity and specificity were estimated at 33% and 99%, respectively. Exhaled breath hydrogen cyanide is a specific biomarker of new P. aeruginosa infection in children with CF. Its low sensitivity means that at present, hydrogen cyanide cannot be used as a screening test for this infection

    The PTPN22 Locus and Rheumatoid Arthritis: No Evidence for an Effect on Risk Independent of Arg620Trp

    Get PDF
    The Trp(620) allotype of PTPN22 confers susceptibility to rheumatoid arthritis (RA) and certain other classical autoimmune diseases. There has been a report of other variants within the PTPN22 locus that alter risk of RA; protective haplotype '5', haplotype group '6-10' and susceptibility haplotype '4', suggesting the possibility of other PTPN22 variants involved in the pathogenesis of RA independent of R620W (rs2476601). Our aim was to further investigate this possibility.A total of 4,460 RA cases and 4,481 controls, all European, were analysed. Single nucleotide polymorphisms rs3789607, rs12144309, rs3811021 and rs12566340 were genotyped over New Zealand (NZ) and UK samples. Publically-available Wellcome Trust Case Control Consortium (WTCCC) genotype data were used.The protective effect of haplotype 5 was confirmed (rs3789607; (OR = 0.91, P = 0.016), and a second protective effect (possibly of haplotype 6) was observed (rs12144309; OR = 0.90, P = 0.021). The previously reported susceptibility effect of haplotype 4 was not replicated; instead a protective effect was observed (rs3811021; OR = 0.85, P = 1.4×10(-5)). Haplotypes defined by rs3789607, rs12144309 and rs3811021 coalesced with the major allele of rs12566340 within the adjacent BFK (B-cell lymphoma 2 (BCL2) family kin) gene. We, therefore, tested rs12566340 for association with RA conditional on rs2476601; there was no evidence for an independent effect at rs12566340 (P = 0.76). Similarly, there was no evidence for an independent effect at rs12566340 in type 1 diabetes (P = 0.85).We have no evidence for a common variant additional to rs2476601 within the PTPN22 locus that influences the risk of RA. Arg620Trp is almost certainly the single common causal variant

    C60_{60} in intense femtosecond laser pulses: nonlinear dipole response and ionization

    Full text link
    We study the interaction of strong femtosecond laser pulses with the C60_{60} molecule employing time-dependent density functional theory with the ionic background treated in a jellium approximation. The laser intensities considered are below the threshold of strong fragmentation but too high for perturbative treatments such as linear response. The nonlinear response of the model to excitations by short pulses of frequencies up to 45eV is presented and analyzed with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond laser pulses of 800nm wavelength ionization is found to occur multiphoton-like rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure

    Characterization of time-resolved laser differential phase using 3D complementary cumulative distribution functions

    Get PDF
    An experimental method for characterizing the time-resolved phase noise of a fast switching tunable laser is discussed. The method experimentally determines a complementary cumulative distribution function of the laser's differential phase as a function of time after a switching event. A time resolved bit error rate of differential quadrature phase shift keying formatted data, calculated using the phase noise measurements, was fitted to an experimental time-resolved bit error rate measurement using a field programmable gate array, finding a good agreement between the time-resolved bit error rates

    An allele of IKZF1 (Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against type 1 diabetes.

    Get PDF
    OBJECTIVE: IKZF1 encoding Ikaros, an essential regulator of lymphopoiesis and immune homeostasis, has been implicated in the development of childhood acute lymphoblastic leukemia (C-ALL). Because recent genome-wide association (GWA) studies have linked a region of the 3'-UTR of IKZF1 with C-ALL susceptibility, we tested whether IKZF1 is associated with the autoimmune disease type 1 diabetes. RESEARCH DESIGN AND METHODS: rs10272724 (T>C) near IKZF1 at 7p12 was genotyped in 8,333 individuals with type 1 diabetes, 9,947 control subjects, and 3,997 families of European ancestry. Association was tested using logistic regression in the case-control data and by the transmission disequilibrium test in the families. Expression data for IKZF1 by rs10272724 genotype were obtained using quantitative PCR of mRNA/cDNA generated from peripheral blood mononuclear cells from 88 individuals, whereas expression data for five other neighboring genes were obtained from the online Genevar dataset. RESULTS: The minor allele of rs10272724 (C) was found to be protective from type 1 diabetes (odds ratio 0.87 [95% CI 0.83-0.91]; P = 1.1 × 10(-11)). rs10272724 was not correlated with levels of two transcripts of IKZF1 in peripheral blood mononuclear cells. CONCLUSIONS: The major susceptibility genotype for C-ALL confers protection from type 1 diabetes. Our finding strengthens the link between autoimmunity and lymphoid cancers. Further investigation is warranted for the genetic effect marked by rs10272724, its impact on IKZF1, and the role of Ikaros and other family members, Ailios (IKZF3) and Eos (IKZF4), in autoimmunity
    corecore