64 research outputs found

    Imaging of Functional Connectivity in the Mouse Brain

    Get PDF
    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models

    Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure

    Get PDF
    Abstract Prenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear. In the current study, we investigated associations between socioeconomic disadvantage, gestational inflammation, and neonatal white matter microstructure in 320 mother-infant dyads over-sampled for poverty. We analyzed maternal serum levels of four cytokines (IL-6, IL-8, IL-10, TNF-α) over the course of pregnancy in relation to offspring white matter microstructure and socioeconomic disadvantage. Higher average maternal IL-6 was associated with very low socioeconomic status (SES; INR < 200% poverty line) and lower neonatal corticospinal fractional anisotropy (FA) and lower uncinate axial diffusivity (AD). No other cytokine was associated with SES. Higher average maternal IL-10 was associated with lower FA and higher radial diffusivity (RD) in corpus callosum and corticospinal tracts, higher optic radiation RD, lower uncinate AD, and lower FA in inferior fronto-occipital fasciculus and anterior limb of internal capsule tracts. SES moderated the relationship between average maternal TNF-α levels during gestation and neonatal white matter diffusivity. When these interactions were decomposed, the patterns indicated that this association was significant and positive among very low SES neonates, whereby TNF-α was inversely and significantly associated with inferior cingulum AD. By contrast, among the more advantaged neonates (lower-to-higher SES [INR ≥ 200% poverty line]), TNF-α was positively and significantly associated with superior cingulum AD. Taken together, these findings suggest that the relationship between prenatal cytokine exposure and white matter microstructure differs as a function of SES. These patterns are consistent with a scenario where gestational inflammation’s effects on white matter development diverge depending on the availability of foundational resources in utero

    Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study

    No full text
    Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment, and epilepsy. The causes of BPP are heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic causes of BPP and characterise their frequency in this population.Children (aged ≤18 years) with polymicrogyria were enrolled into our research programme from July, 1980, to October, 2015, at two centres (Florence, Italy, and Seattle, WA, USA). We obtained samples (blood and saliva) throughout this period at both centres and did whole-exome sequencing on DNA from eight trios (two parents and one affected child) with BPP in 2014. After the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 by two methods in a cohort of 118 children with BPP. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal to large head size. Second, we did amplicon sequencing of the recurrent PIK3R2 mutation (Gly373Arg) in 80 children with various types of polymicrogyria including BPP. One additional patient had clinical whole-exome sequencing done independently, and was included in this study because of the phenotypic similarity to our cohort.We identified a mosaic mutation (Gly373Arg) in a regulatory subunit of the PI3K-AKT-mTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal to large head size who underwent targeted next-generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient had the recurrent PIK3R2 mutation identified by clinical whole-exome sequencing. Seven of these 20 patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. 19 patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (Lys376Glu). Mutations were constitutional in 12 patients and mosaic in eight patients. In patients with mosaic mutations, we noted substantial variation in alternate (mutant) allele levels, ranging from ten (3%) of 377 reads to 39 (37%) of 106 reads, equivalent to 5-73% of cells analysed. Levels of mosaicism varied from undetectable to 37 (17%) of 216 reads in blood-derived DNA compared with 2030 (29%) of 6889 reads to 275 (43%) of 634 reads in saliva-derived DNA.Constitutional and mosaic mutations in the PIK3R2 gene are associated with developmental brain disorders ranging from BPP with a normal head size to the MPPH syndrome. The phenotypic variability and low-level mosaicism, which challenge conventional molecular methods, have important implications for genetic testing and counselling.US National Institutes of Health.Ghayda M Mirzaa, Valerio Conti, Andrew E Timms, Christopher D Smyser, Sarah Ahmed ... Christopher Barnett ... et al

    Developing a framework for studying brain networks in neonatal hypoxic-ischemic encephalopathy

    No full text
    Newborns with hypoxic-ischemic encephalopathy (HIE) are at high risk of brain injury, with subsequent developmental problems including severe neuromotor, cognitive and behavioral impairment. Neural correlates of cognitive and behavioral impairment in neonatal HIE, in particular in infants who survive without severe neuromotor impairment, are poorly understood. It is reasonable to hypothesize that in HIE both structural and functional brain networks are altered, and that this might be the neural correlate of impaired cognitive and/or behavioral impairment in HIE. Here, an analysis pipeline to study the structural and functional brain networks from neonatal MRI in newborns with HIE is presented. The structural connectivity is generated from dense whole-brain tractograms derived from diffusion-weighted MR fibre tractography. This investigation of functional connectivity focuses on the emerging resting state networks (RSNs), which are sensitive to injuries from hypoxic-ischemic insults to the newborn brain. In conjunction with the structural connectivity, alterations to the structuro-functional connectivity of the RSNs can be studied. Preliminary results from a proof-of-concept study in a small cohort of newborns with HIE are promising. The obstacles encountered and improvements to the pipeline are discussed. The framework can be further extended for joint analysis with EEG functional-connectivity
    • …
    corecore