27 research outputs found

    Effect of thin obstacles heights on heat transfer and flow characteristics in microchannels

    Get PDF
    This paper presents a numerical analysis of the thermal-flow characteristics for a laminar flow inside a rectangular microchannel. The flow of water through channels with thin obstacles mounted on opposite walls was analyzed. The studies were conducted with a low Reynolds number (from 20 to 200). Different heights of rectangular obstacles were analyzed to see if geometrical factors influence fluid flow and heat exchange in the microchannel. Despite of the fact that the use of thin obstacles in the microchannels leads to an increase in the pressure drop, the increase in the height of the obstacles favors a significant intensification of heat exchange with the maximum thermal gain factor of 1.9 for the obstacle height coefficient h/H=0.5, which could be acceptable for practical application

    Experimental Investigations of Induction Heating in Warm Forming of Stainless Steel Sheets

    Get PDF
    The main objective of this study is to investigate the effect of heating conditions on the temperature distribution in sheet metal. An AMS5604 stainless steel sheet was heated in an induction heater. Then, the hot workpiece was transported to the stamping tool. The uniform temperature distribution is a key factor influencing the possibility of forming and quality of warm-formed parts. To study the temperature distribution in sheet plate we carried out the measurements using termoelements. Furthermore, thermovisual measurements were performed using a FLIR P 640 thermovisual camera. It was found that to improve the uniformity of the temperature distribution in the workpiece the time of heating should be increased. However, the time of transport of the sheet to the tool should be decreased. During air cooling a decrease of the difference between the maximal and minimal temperature of the sheet is observed

    NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER

    Get PDF
    The focus of this paper are experimental and numerical strength tests of domestic hot water storage tanks. The tests involved the verification of the minimum wall thickness for the assumed operating parameters while meeting all safety standards. The authors presented numerical and experimental analyses for the verification of strength parameters of axial cylindrical tanks due to the lack of methodological guidelines for this type of equipment. In order to verify the conducted theoretical considerations and calculations, experimental tests of samples of front welds produced with austenitic steel as well as a pressure test for the whole tank were conducted using a research test stand

    NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER

    Get PDF
    The focus of this paper are experimental and numerical strength tests of domestic hot water storage tanks. The tests involved the verification of the minimum wall thickness for the assumed operating parameters while meeting all safety standards. The authors presented numerical and experimental analyses for the verification of strength parameters of axial cylindrical tanks due to the lack of methodological guidelines for this type of equipment. In order to verify the conducted theoretical considerations and calculations, experimental tests of samples of front welds produced with austenitic steel as well as a pressure test for the whole tank were conducted using a research test stand

    HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES

    Get PDF
    Aircraft structures are designed to mainly consist of integral elements which have been produced by welding or riveting of component parts in technologies utilized earlier in the production process. Parts such as ribs, longitudinals, girders, frames, coverages of fuselage and wings can all be categorized as integral elements. These parts are assembled into larger assemblies after milling. The main aim of the utilized treatments, besides ensuring the functional criterion, is obtaining the best ratio of strength to con-struction weight. Using high milling speeds enables economical manu-facturing of integral components by reducing machining time, but it also improves the quality of the machined surface. It is caused by the fact that cutting forces are significantly lower for high cutting speeds than for standard machining techniques

    Criterion numbers in characteristics of a coil heat exchanger

    No full text
    W artykule zaprezentowano przegląd literaturowy oraz analizę porównawczą dotyczącą liczb kryterialnych istotnych w opisie i projektowaniu wężownicowych wymienników ciepła – liczby Deana i krytycznej liczby Reynoldsa. Liczby te uwzględniają specyfikę przepływu płynu w wężownicy powstałej przez nawinięcie rury o przekroju kołowym na walcowej pobocznicy. Omówiono również geometrię wężownicy niezbędną w opisie liczb kryterialnych ze względu na istotny wpływ parametrów geometrycznych na strukturę przepływu. Dokonana analiza porządkuje zakresy stosowalności odpowiednich wzorów kryterialnych w zastosowaniu do opisu zjawisk związanych z intensyfikacją wymiany ciepła w wężownicowym wymienniku, wynikającą z pojawienia się przepływu wtórnego, który jest efektem interakcji siły odśrodkowej, sił bezwładności oraz sił wywołanych lepkością płynu.The article presents a literature review and a comparative analysis of criterion numbers important in the description and design of coil heat exchangers - the Dean number and the critical Reynolds number. These numbers take into account the specificity of fluid flow in the coil resulting from winding of the circular section pipe on the cylindrical side. Coil geometry necessary in the description of criterion numbers was also discussed due to the significant influence of geometric parameters on the flow structure. The work analyzes the scope of applicability of appropriate criterion formulas in the description of phenomena related to intensification of heat transfer in the coil heat exchanger resulting from the occurrence of secondary flow, which is the effect of interaction of centrifugal forces, inertia forces and forces caused by fluid viscosity

    Experimental investigation of thermal bridges in building at real conditions

    No full text
    In recent time the energy consumption of buildings may be reduced by the application of modern technologies in the construction industry. Modern building materials ensure a reduction of heat losses. However, studies show that thermal bridges may cause up to 30% of the additional heat losses through the building envelope. Therefore, a one key aspect in assessing the real thermal state of buildings is the identification of the heat losses through thermal bridges. The analytical, experimental and numerical methods are used for the assessment of thermal transmittance value of building. In the paper the authors present the experimental research on heat losses through the building under real winter conditions. Infrared thermovision technique has been used to the thermal bridges assessment in situ. IR thermography technique allowed the determination of the influence of thermal bridges on the additional heat losses. For the obtaining the surface emissivity the measurements have been also performed with the use of thermocouples system. Numerical validation of the experimental results has been performed

    Experimental and theoretical investigations of special type coil heat exchanger with the nanofluid buffer layer

    No full text
    The paper presents the results of experimental and theoretical investigations of special type of coil heat exchanger. The tested device is equipped with three vertical coils and the temperature stratification system. Water is a heating medium in two coils. The refrigerant transferring the waste heat from air conditioning system is the heating medium in the third coil. The finned pipe of this coil has a double wall in which the annular buffer layer with nanofluid is mounted. Thermophysical properties of the applied water based Cu nanofluid cause the enhancement of heat transfer through the buffer layer. The paper presents thermal characteristics of the exchanger received on the basis of measurements performed on the industrial test stand. Measurements were conducted during the operation of the coil with refrigerant. Heat loss to the surroundings, distributions of water temperature in the storage tank, changes of water temperature in time and thermal power of the coil heat exchanger were obtained. The measurement results were compared with those received on the basis of theoretical analysis of the exchanger

    Experimental and theoretical investigations of special type coil heat exchanger with the nanofluid buffer layer

    No full text
    The paper presents the results of experimental and theoretical investigations of special type of coil heat exchanger. The tested device is equipped with three vertical coils and the temperature stratification system. Water is a heating medium in two coils. The refrigerant transferring the waste heat from air conditioning system is the heating medium in the third coil. The finned pipe of this coil has a double wall in which the annular buffer layer with nanofluid is mounted. Thermophysical properties of the applied water based Cu nanofluid cause the enhancement of heat transfer through the buffer layer. The paper presents thermal characteristics of the exchanger received on the basis of measurements performed on the industrial test stand. Measurements were conducted during the operation of the coil with refrigerant. Heat loss to the surroundings, distributions of water temperature in the storage tank, changes of water temperature in time and thermal power of the coil heat exchanger were obtained. The measurement results were compared with those received on the basis of theoretical analysis of the exchanger

    Impact of the Confinement Plate on the Velocity of Synthetic Jet

    No full text
    In the paper, the impact of the limitation of the environment around the office of synthetic jet actuators were tested. One short and three length orifices were tested and compared with and without confinement plate. In total, seven different synthetic jet actuators were investigated. The constant temperature anemometer was used for the velocity measurements. The synthetic jet was tested for the Reynolds number in the range of 2300 < Re < 19,500, and the Stokes number in the range of 46 < S < 62. The confinement plate decreased the velocity of synthetic jet depending on the actuator supply power even around 5%. However, the differences in axial velocity profile are slight and the impact of the confinement plate was visible only in the distance x/d < 4
    corecore