12 research outputs found

    A Fresh Catch of Massive Binaries in the Cygnus OB2 Association

    Full text link
    Massive binary stars may constitute a substantial fraction of progenitors to supernovae and gamma-ray bursts, and the distribution of their orbital characteristics holds clues to the formation process of massive stars. As a contribution to securing statistics on OB-type binaries, we report the discovery and orbital parameters for five new systems as part of the Cygnus OB2 Radial Velocity Survey. Four of the new systems (MT070, MT174, MT267, and MT734 (a.k.a. VI Cygni #11) are single-lined spectroscopic binaries while one (MT103) is a double-lined system (B1V+B2V). MT070 is noteworthy as the longest period system yet measured in Cyg OB2, with P=6.2 yr. The other four systems have periods ranging between 4 and 73 days. MT174 is noteworthy for having a probable mass ratio q<0.1, making it a candidate progenitor to a low-mass X-ray binary. These measurements bring the total number of massive binaries in Cyg OB2 to 25, the most currently known in any single cluster or association.Comment: Accepted for publication in the Astrophysical Journa

    The Formation and Evolution of Wide-orbit Stellar Multiples In Magnetized Clouds

    Get PDF
    Stars rarely form in isolation. Nearly half of the stars in the Milky Way have a companion, and this fraction increases in star-forming regions. However, why some dense cores and filaments form bound pairs while others form single stars remains unclear. We present a set of three-dimensional, gravo-magnetohydrodynamic simulations of turbulent star-forming clouds, aimed at understanding the formation and evolution of multiple-star systems formed through large-scale (greater than or similar to 10(3) au) turbulent fragmentation. We investigate three global magnetic field strengths, with global mass-to-flux ratios of mu(phi) = 2, 8, and 32. The initial separations of protostars in multiples depend on the global magnetic field strength, with stronger magnetic fields (e.g., mu(phi)= 2) suppressing fragmentation on smaller scales. The overall multiplicity fraction (MF) is between 0.4 and 0.6 for our strong and intermediate magnetic field strengths, which is in agreement with observations. The weak field case has a lower fraction. The MF is relatively constant throughout the simulations, even though stellar densities increase as collapse continues. While the MF rarely exceeds 60% in all three simulations, over 80% of all protostars are part of a binary system at some point. We additionally find that the distribution of binary spin misalignment angles is consistent with a randomized distribution. In all three simulations, several binaries originate with wide separations and dynamically evolve to less than or similar to 10(2) au separations. We show that a simple model of mass accretion and dynamical friction with the gas can explain this orbital evolution.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The highly variable time evolution of star-forming cores identified with dendrograms

    Full text link
    We investigate the time evolution of dense cores identified in molecular cloud simulations using dendrograms, which are a common tool to identify hierarchical structure in simulations and observations of star formation. We develop an algorithm to link dendrogram structures through time using the three-dimensional density field from magnetohydrodynamical simulations, thus creating histories for all dense cores in the domain. We find that the population-wide distributions of core properties are relatively invariant in time, and quantities like the core mass function match with observations. Despite this consistency, an individual core may undergo large (>40%), stochastic variations due to the redefinition of the dendrogram structure between timesteps. This variation occurs independent of environment and stellar content. We identify a population of short-lived (<200 kyr) overdensities masquerading as dense cores that may comprise ~20% of any time snapshot. Finally, we note the importance of considering the full history of cores when interpreting the origin of the initial mass function; we find that, especially for systems containing multiple stars, the core mass defined by a dendrogram leaf in a snapshot is typically less than the final system stellar mass. This work reinforces that there is no time-stable density contour that defines a star-forming core. The dendrogram itself can induce significant structure variation between timesteps due to small changes in the density field. Thus, one must use caution when comparing dendrograms of regions with different ages or environment properties because differences in dendrogram structure may not come solely from the physical evolution of dense cores.Comment: 20 pages, 17 figures. Submitted to MNRA

    Machine learning classification of Kuiper belt populations

    No full text
    In the outer Solar system, the Kuiper belt contains dynamical subpopulations sculpted by a combination of planet formation and migration and gravitational perturbations from the present-day giant planet configuration. The subdivision of observed Kuiper belt objects (KBOs) into different dynamical classes is based on their current orbital evolution in numerical integrations of their orbits. Here, we demonstrate that machine learning algorithms are a promising tool for reducing both the computational time and human effort required for this classification. Using a Gradient Boosting Classifier, a type of machine learning regression tree classifier trained on features derived from short numerical simulations, we sort observed KBOs into four broad, dynamically distinct populations - classical, resonant, detached, and scattering - with a >97 per cent accuracy for the testing set of 542 securely classified KBOs. Over 80 per cent of these objects have a >3 sigma probability of class membership, indicating that the machine learning method is classifying based on the fundamental dynamical features of each population. We also demonstrate how, by using computational savings over traditional methods, we can quickly derive a distribution of class membership by examining an ensemble of object clones drawn from the observational errors. We find two major reasons for misclassification: inherent ambiguity in the orbit of the object - for instance, an object that is on the edge of resonance - and a lack of representative examples in the training set. This work provides a promising avenue to explore for fast and accurate classification of the thousands of new KBOs expected to be found by surveys in the coming decade.National Science FoundationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Fate of Debris in the Pluto-Charon System

    No full text
    The Pluto-Charon system has come into sharper focus following the fly by of New Horizons. We use N-body simulations to probe the unique dynamical history of this binary dwarf planet system. We follow the evolution of the debris disc that might have formed during the Charon-forming giant impact. First, we note that in-situ formation of the four circumbinary moons is extremely difficult if Charon undergoes eccentric tidal evolution. We track collisions of disc debris with Charon, estimating that hundreds to hundreds of thousands of visible craters might arise from 0.3--5 km radius bodies. New Horizons data suggesting a dearth of these small craters may place constraints on the disc properties. While tidal heating will erase some of the cratering history, both tidal and radiogenic heating may also make it possible to differentiate disc debris craters from Kuiper belt object craters. We also track the debris ejected from the Pluto-Charon system into the Solar System; while most of this debris is ultimately lost from the Solar System, a few tens of 10--30 km radius bodies could survive as a Pluto-Charon collisional family. Most are plutinos in the 3:2 resonance with Neptune, while a small number populate nearby resonances. We show that migration of the giant planets early in the Solar System's history would not destroy this collisional family. Finally, we suggest that identification of such a family would likely need to be based on composition as they show minimal clustering in relevant orbital parameters.Comment: 13 pages, 7 figures, Accepted to MNRA

    The Fate of Debris in the Pluto-Charon System

    No full text
    The Pluto-Charon system has come into sharper focus following the flyby of New Horizons. We use N-body simulations to probe the unique dynamical history of this binary dwarf planet system. We follow the evolution of the debris disc that might have formed during the Charon-forming giant impact. First, we note that in situ formation of the four circumbinary moons is extremely difficult if Charon undergoes eccentric tidal evolution. We track collisions of disc debris with Charon, estimating that hundreds to hundreds of thousands of visible craters might arise from 0.3-5 km radius bodies. New Horizons data suggesting a dearth of these small craters may place constraints on the disc properties. While tidal heating will erase some of the cratering history, both tidal and radiogenic heating may also make it possible to differentiate disc debris craters from Kuiper belt object craters. We also track the debris ejected from the Pluto-Charon system into the Solar system; while most of this debris is ultimately lost from the Solar system, a few tens of 10-30 km radius bodies could survive as a Pluto-Charon collisional family. Most are plutinos in the 3: 2 resonance with Neptune, while a small number populate nearby resonances. We show that migration of the giant planets early in the Solar system's history would not destroy this collisional family. Finally, we suggest that identification of such a family would likely need to be based on composition as they show minimal clustering in relevant orbital parameters.National Science Foundation [AST-1410174, DGE-1143953, 1228509]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore