5 research outputs found

    Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells

    Get PDF
    Medical nanoplatforms based on clusters of superparamagnetic nanoparticles decorated with a PNIPAM thermo-responsive shell have been synthesized and used as drug carriers for doxorubicin (DOXO), a common chemotherapeutic agent. The nanosystem here developed has a total diameter below 200 nm and exploits the temperature responsive behaviour of the PNIPAM polymeric shell for the controlled loading and release of DOXO. The system has been tested in vitro on tumour cells and it clearly demonstrates the effectiveness of drug polymer encapsulation and time-dependent cell death induced by the doxorubicin release. Comparative cellular studies of the DOXO loaded nanoplatform in the presence or absence of an external magnet (0.3 T) showed the synergic effect of accumulation and enhanced toxicity of the system, when magnetically guided, resulting in the enhanced efficacy of the system

    Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles.

    Get PDF
    Smart materials able to sense environmental stimuli can be exploited as intelligent carrier systems. Acidic pH-responsive polymers, for instance, exhibit a variation in the ionization state upon lowering the pH, which leads to their swelling. The different permeability of these polymers as a function of the pH could be exploited for the incorporation and subsequent release of previously trapped payload molecules/nanoparticles. We provide here a proof of concept of a novel use of pH-responsive polymer nanostructures based on 2-vinylpyridine and divinylbenzene, having an overall size below 200 nm, as cargo system for magnetic nanoparticles, for oligonucleotide sequences, as well as for their simultaneous loading and controlled release mediated by the pH

    "Nanohybrids" based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications.

    Get PDF
    Allyl-PEG capped inorganic NPs, including magnetic iron oxide (IONPs), fluorescent CdSe/ZnS quantum dots (QDs), and metallic gold (AuNPs of 5 and 10 nm) both individually and in combination, were covalently attached to pH-responsive poly(2-vinylpyridine-co-divinylbenzene) nanogels via a facile and robust one-step surfactant-free emulsion polymerization procedure. Control of the NPs associated to the nanogels was achieved by the late injection of the NPs to the polymerization solution at a stage when just polymeric radicals were present. Remarkably, by varying the total amount of NPs injected, the swelling behavior could be affected. Furthermore, the magnetic response as well as the optical features of the nanogels containing either IONPs or QDs could be modified. In addition, a radical quenching in case of gold nanoparticles was observed, thus affecting the final nanogel geometry

    Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles

    No full text
    Smart materials able to sense environmental stimuli can be exploited as intelligent carrier systems. Acidic pH-responsive polymers, for instance, exhibit a variation in the ionization state upon lowering the pH, which leads to their swelling. The different permeability of these polymers as a function of the pH could be exploited for the incorporation and subsequent release of previously trapped payload molecules/nanoparticles. We provide here a proof of concept of a novel use of pH-responsive polymer nanostructures based on 2-vinylpyridine and divinylbenzene, having an overall size below 200 nm, as cargo system for magnetic nanoparticles, for oligonucleotide sequences, as well as for their simultaneous loading and controlled release mediated by the pH

    "Nanohybrids" Based on pH-Responsive Hydrogels and Inorganic Nanoparticles for Drug Delivery and Sensor Applications

    No full text
    Allyl-PEG capped inorganic NPs, including magnetic iron oxide (IONPs), fluorescent CdSe/ZnS quantum dots (QDs), and metallic gold (AuNPs of 5 and 10 nm) both individually and in combination, were covalently attached to pH-responsive poly(2-vinylpyridine-co-divinylbenzene) nanogels via a facile and robust one-step surfactant-free emulsion polymerization procedure. Control of the NPs associated to the nanogels was achieved by the late injection of the NPs to the polymerization solution at a stage when just polymeric radicals were present. Remarkably, by varying the total amount of NPs injected, the swelling behavior could be affected. Furthermore, the magnetic response as well as the optical features of the nanogels containing either IONPs or QDs could be modified. In addition, a radical quenching in case of gold nanoparticles was observed, thus affecting the final nanogel geometry
    corecore