18 research outputs found

    Plasma polymers from oregano secondary metabolites: Antibacterial and biocompatible plant-based polymers

    Get PDF
    Bacterial infection of chronic wounds is a major healthcare problem that affects the quality of life of millions of patients worldwide and leads to a substantial healthcare cost burden. This project focused on the manufacture of a potential wound healing agent. Plasma polymers from oregano secondary metabolites (PP-OSMs) were fabricated by radiofrequency plasma-enhanced chemical vapor deposition (RF-PECVD) in continuous and pulse plasma modes at room temperature. The surface, biocompatibility, and antibacterial properties of the PP-OSMs were investigated. Polymers fabricated by RF-PECVD retained the functional groups of OSMs, promoted human dermal fibroblast adhesion, inhibited Staphylococcus aureus attachment, and eliminated Pseudomonas aeruginosa. The PP-OSM coatings are potential candidates for use in medical applications where cell biocompatibility and antibacterial properties are required

    Meeting IMT 2030 Performance Targets: The Potential of OTFDM Waveform and Structural MIMO Technologies

    Full text link
    The white paper focuses on several candidate technologies that could play a crucial role in the development of 6G systems. Two of the key technologies explored in detail are Orthogonal Time Frequency Division Multiplexing (OTFDM) waveform and Structural MIMO (S-MIMO)

    Increase in pediatric recurrent fever evaluations during the first year of the COVID-19 pandemic in North America

    Get PDF
    The impact of the COVID-19 pandemic on new diagnoses of recurrent fevers and autoinflammatory diseases is largely unknown. The Childhood Arthritis and Rheumatology Research Alliance (CARRA) PFAPA/AID Working Group aimed to investigate the impact of the COVID-19 pandemic on the number of pediatric patients evaluated for recurrent fevers and autoinflammatory diseases in North America. The absolute number of new outpatient visits and the proportion of these visits attributed to recurrent fever diagnoses during the pre-pandemic period (1 March 2019–29 February 2020) and the first year of the COVID-19 pandemic (1 March 2020–28 February 2021) were examined. Data were collected from 27 sites in the United States and Canada. Our results showed an increase in the absolute number of new visits for recurrent fever evaluations in 21 of 27 sites during the COVID-19 pandemic compared to the pre-pandemic period. The increase was observed across different geographic regions in North America. Additionally, the proportion of new visits to these centers for recurrent fever in relation to all new patient evaluations was significantly higher during the first year of the pandemic, increasing from 7.8% before the pandemic to 10.9% during the pandemic year (p < 0.001). Our findings showed that the first year of the COVID-19 pandemic was associated with a higher number of evaluations by pediatric subspecialists for recurrent fevers. Further research is needed to understand the reasons behind these findings and to explore non-infectious triggers for recurrent fevers in children

    Randomized Control Trial for Reduction of Body Weight, Body Fat Patterning, and Cardiometabolic Risk Factors in Overweight Worksite Employees in Delhi, India

    No full text
    Background. We studied the impact of the multicomponent interventions on body weight and cardiometabolic risk factors in overweight individuals working in corporate worksites. Methods. Overweight (BMI ≥ 23 kg/m2) subjects were recruited from four randomised worksites [two active intervention (n, recruited, 180, completed 156) and two control (n, recruited 130, completed 111)]. Intensive intervention was given at intervention worksite. Results. High prevalence (%) of obesity (90.9, 80.2), abdominal obesity (93.5, 84.3), excess skinfold thickness (70.3, 75.9), and low high-density lipoprotein cholesterol (HDL-c) levels (56.8, 63.7) were seen in the intervention and the control group, respectively. At the end of intervention, the following significant changes were observed in the intervention group: decrease in weight, BMI, waist circumference, serum triglycerides, and increase in HDL-c. Weight loss of more than 5% was seen in 12% and 4% individuals in the intervention and control groups, respectively. Most importantly, the sum of all the skinfold measurements (mm) in the intervention group decreased significantly more than the control group (12.51 ± 10.38 versus 3.50 ± 8.18, resp.). Conclusion. This multicomponent worksite trial showed a reduction in weight, excess subcutaneous fat, and cardiometabolic risk factors after 6 months of active intervention in overweight Asian Indians. Trial Registration. This trial is registered with NCT03249610

    Local structure of amorphous Ag5In5Sb60Te30 and In3SbTe2 phase change materials revealed by X-ray photoelectron and Raman spectroscopic studies

    No full text
    Reversible switching between highly resistive (binary ``0'') amorphous phase and low resistive (binary ``1'') crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (similar to 44%) and Te (similar to 56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (similar to 63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST. Published by AIP Publishing

    Potential of plant secondary metabolite-based polymers to enhance wound healing

    No full text
    There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. Statement of significance: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered. (c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Antimicrobial graphene-based coatings for biomedical implant applications

    Get PDF
    Implant-associated infections (IAI) cause significant health issues and healthcare costs. In this research, we deposited graphene (Gr) on a medical-grade cobalt-chromium (CoCr) alloy surface by radiofrequency plasma-enhanced chemical vapor deposition (RF-PECVD) using Origanum vulgare as a precursor material. The deposition of Gr on the CoCr was confirmed using Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The biocompatibility and antibacterial properties of CoCr-Gr were investigated. CoCr-Gr was biocompatible and promoted cell adhesion and spreading of RAW 267.4 macrophage cells. CoCr-Gr were antibacterial against Staphylococcus aureus and Pseudomonas aeruginosa and inhibited P. aeruginosa attachment. The results indicate that CoCr-Gr could be used as a potential antibacterial coating material for implantable devices
    corecore