7 research outputs found

    Barriers and opportunities of soil knowledge to address soil challenges: Stakeholders? perspectives across Europe

    Get PDF
    Climate-smart sustainable management of agricultural soil is critical to improve soil health, enhance food and water security, contribute to climate change mitigation and adaptation, biodiversity preservation, and improve human health and wellbeing. The European Joint Programme for Soil (EJP SOIL) started in 2020 with the aim to significantly improve soil management knowledge and create a sustainable and integrated European soil research system. EJP SOIL involves more than 350 scientists across 24 Countries and has been addressing multiple aspects associated with soil management across different European agroecosystems. This study summarizes the key findings of stakeholder consultations conducted at the national level across 20 countries with the aim to identify important barriers and challenges currently affecting soil knowledge but also assess opportunities to overcome these obstacles. Our findings demonstrate that there is significant room for improvement in terms of knowledge production, dissemination and adoption. Among the most important barriers identified by consulted stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research. The main soil challenge across consulted member states remains to improve soil organic matter and peat soil conservation while soil water storage capacity is a key challenge in Southern Europe. Findings from this study clearly suggest that going forward climate-smart sustainable soil management will benefit from (1) increases in research funding, (2) the maintenance and valorisation of long-term (field) ex-periments, (3) the creation of knowledge sharing networks and interlinked national and European in-frastructures, and (4) the development of regionally-tailored soil management strategies. All the above -mentioned interventions can contribute to the creation of healthy, resilient and sustainable soil ecosystems across Europe

    Barriers and opportunities of soil knowledge to address soil challenges : Stakeholders’ perspectives across Europe

    Get PDF
    Climate-smart sustainable management of agricultural soil is critical to improve soil health, enhance food and water security, contribute to climate change mitigation and adaptation, biodiversity preservation, and improve human health and wellbeing. The European Joint Programme for Soil (EJP SOIL) started in 2020 with the aim to significantly improve soil management knowledge and create a sustainable and integrated European soil research system. EJP SOIL involves more than 350 scientists across 24 Countries and has been addressing multiple aspects associated with soil management across different European agroecosystems. This study summarizes the key findings of stakeholder consultations conducted at the national level across 20 countries with the aim to identify important barriers and challenges currently affecting soil knowledge but also assess opportunities to overcome these obstacles. Our findings demonstrate that there is significant room for improvement in terms of knowledge production, dissemination and adoption. Among the most important barriers identified by consulted stakeholders are technical, political, social and economic obstacles, which strongly limit the development and full exploitation of the outcomes of soil research. The main soil challenge across consulted member states remains to improve soil organic matter and peat soil conservation while soil water storage capacity is a key challenge in Southern Europe. Findings from this study clearly suggest that going forward climate-smart sustainable soil management will benefit from (1) increases in research funding, (2) the maintenance and valorisation of long-term (field) experiments, (3) the creation of knowledge sharing networks and interlinked national and European infrastructures, and (4) the development of regionally-tailored soil management strategies. All the above-mentioned interventions can contribute to the creation of healthy, resilient and sustainable soil ecosystems across Europe

    National soil data in EU countries, where do we stand?

    No full text
    At European scale, soil characteristics are needed to evaluate soil quality, soil health and soi l-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, al l owing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at t h e European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, i n the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including fores t and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into f i ve groups: 1. main soil parametersaccording to the Global Soil Map specifications; 2. other soil chemical parameters; 3. oth e r physical parameters; 4. other pedological parameters; and 5. soil biological features. A classification based onthe environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70 % of the country soil databases, water content, contamination with organic pollutants and biological parameters are the least frequently reported parameters. Such differences will have conse que nce s when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the me thods used in collecting, preparing, and analysing the soils were found, thus requiring harmonisation procedures and more cooperation among countries and with the EU to use the data at the European scale Additionally, choosing harmonized and useful interpretation and threshold values f or EU soil indicators may be challenging due to the different methods used and the wide variety of soil land-use and climate combinations influencing possible thresholds. The temporal scale of the soil databases reported is also extremely wide, starting from the ‘20s of the 20th century
    corecore