38 research outputs found

    How prepared are we for cross-border outbreaks? An exploratory analysis of cross-border response networks for outbreaks of multidrug resistant microorganisms in the Netherlands and Germany

    Get PDF
    Background: The emergence and spread of multidrug resistant microorganisms is a serious threat to transnational public health. Therefore, it is vital that cross-border outbreak response systems are constantly prepared for fast, rigorous, and efficient response. This research aims to improve transnational collaboration by identifying, visualizing, and exploring two cross-border response networks that are likely to unfold during outbreaks involving the Netherlands and Germany.Methods: Quantitative methods were used to explore response networks during a cross-border outbreak of carbapenem resistant Enterobacteriaceae in healthcare settings. Eighty-six Dutch and German health professionals reflected on a fictive but realistic outbreak scenario (response rate ≈ 70%). Data were collected regarding collaborative relationships between stakeholders during outbreak response, prior working relationships, and trust in the networks. Network analysis techniques were used to analyze the networks on the network level (density, centralization, clique structures, and similarity of tie constellations between two networks) and node level (brokerage measures and degree centrality).Results: Although stakeholders mainly collaborate with stakeholders belonging to the same country, transnational collaboration is present in a centralized manner. Integration of the network is reached, since several actors are beneficially positioned to coordinate transnational collaboration. However, levels of trust are moderately low and prior-existing cross-border working relationships are sparse.Conclusion: Given the explored network characteristics, we conclude that the system has a promising basis to achieve effective coordination. However, future research has to determine what kind of network governance form might be most effective and efficient in coordinating the necessary cross-border response activity. Furthermore, networks identified in this study are not only crucial in times of outbreak containment, but should also be fostered in times of non-crisis

    Isoforms of endothelin-converting enzyme-1 (ECE-1) have opposing effects on prostate cancer cell invasion

    Get PDF
    Cross-talk between tumour and stromal cells can profoundly influence cancer cell invasion by increasing the availability of mitogenic peptides such as endothelin-1 (ET-1). Endothelin-1 is elevated in men with metastatic prostate cancer (PC), and can exert both an autocrine (epithelial) and a paracrine (stromal) influence on growth. Endothelin-1 is generated from its inactive precursor big-ET-1 by endothelin-converting enzyme 1 (ECE-1). We and others have demonstrated that ECE-1 expression is significantly elevated in tumours and surrounding stromal tissue. Our current data show siRNA-mediated knockdown of stromal ECE-1 reduces epithelial (PC-3) cell invasion in coculture. Interestingly, readdition of ET-1 only partially recovers this effect suggesting a novel role for ECE-1 independent of ET-1 activation. Parallel knockdown of ECE-1 in both stromal and epithelial compartments results in an additive decrease in cell invasion. We extrapolated this observation to the four recognised isoforms ECE-1a, ECE-1b, ECE-1c and ECE-1d. Only ECE-1a and ECE-1c were significant but with reciprocal effects on cell invasion. Transient ECE-1c overexpression increased PC-3 invasiveness through matrigel, whereas transient ECE-1a expression suppressed invasion. Furthermore, transient ECE-1a expression in stromal cells strongly counteracts the effect of transient ECE-1c expression in PC-3 cells. The ECE-1 isoforms may, therefore, be relevant targets for antiinvasive therapy in prostate and other cancers

    Frequent loss of endothelin-3 (EDN3) expression due to epigenetic inactivation in human breast cancer

    Get PDF
    Introduction: Endothelin (EDN) signalling plays a crucial role in cell differentiation, proliferation and migration processes. There is compelling evidence that altered EDN signalling is involved in carcinogenesis by modulating cell survival and promoting invasiveness. To date, most reports have focused on the oncogenic potential of EDN1 and EDN2, both of which are overexpressed in various tumour entities. Here, we aimed at a first comprehensive analysis on EDN3 expression and its implication in human breast cancer. Methods: EDN3 mRNA expression was assessed by Northern blotting in normal human tissues (n = 9) as well as in matched pairs of normal and tumourous tissues from breast specimens (n = 50). EDN3 mRNA expression in breast cancer was further validated by real-time polymerase chain reaction (PCR) (n = 77). A tissue microarray was used to study EDN3 protein expression in breast carcinoma (n = 150) and normal breast epithelium (n = 44). EDN3 promoter methylation was analysed by methylation-specific PCR in breast cell lines (n = 6) before and after demethylating treatment, normal breast tissues (n = 17) and primary breast carcinomas (n = 128). EDN3 expression and methylation data were statistically correlated with clinical patient characteristics and patient outcome. Results: Loss of EDN3 mRNA expression in breast cancer, as initially detected by array-based expression profiling, could be confirmed by Northern blot analysis (> 2-fold loss in 96%) and real-time PCR (> 2-fold loss in 78%). Attenuated EDN3 expression in breast carcinoma was also evident at the protein level (45%) in association with adverse patient outcome in univariate (P = 0.022) and multivariate (hazard ratio 2.0; P = 0.025) analyses. Hypermethylation of the EDN3 promoter could be identified as the predominant mechanism leading to gene silencing. Reversion of the epigenetic lock by 5-aza-2'-deoxycytidine and trichostatin A resulted in EDN3 mRNA reexpression in vitro. Furthermore, EDN3 promoter hypermethylation was detected in 70% of primary breast carcinomas with significant association to loss of EDN3 mRNA expression (P = 0.005), whilst normal matched breast tissues revealed no EDN3 promoter methylation. Conclusions EDN3 is a frequent target of epigenetic inactivation in human breast cancer, potentially contributing to imbalanced EDN signalling commonly found in this disease. The clinical implication supports the view that EDN3, in contrast to EDN1 and EDN2, may act as natural tumour suppressor in the human mammary gland

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC

    Therapeutic value of glycosaminoglycans in cancer

    No full text
    10.1158/1535-7163.MCT-06-0082Molecular Cancer Therapeutics592139-2148MCTO
    corecore