370 research outputs found

    Electronic structure and bond competition in the polar magnet PbVO3_3

    Full text link
    Density functional electronic structure studies of tetragonal PbVO3_3 are reported. The results show a an important role for both Pb 6pp - O 2pp and V dd - O pp bonding, with an interplay between these. This is discussed in relation to the possibility of obtaining magnetoelectric behavior.Comment: 5 page

    CaCu_3Ti_4O_12/CaTiO_3 Composite Dielectrics: A Ba/Pb-free Ceramics with High Dielectric Constants

    Full text link
    We have measured dielectric properties of Ca1+x_{1+x}Cu3−x_{3-x}Ti4_4O12_{12} (xx = 0, 0.1, 0.5, 1, 1.5, 2, 2.9 and 3), and have found that Ca2_2Cu2_2Ti4_4O12_{12} (a composite of CaCu3_3Ti4_4O12_{12} and CaTiO3_3) exhibits a high dielectric constant of 1800 with a low dissipation factor of 0.02 below 100 kHz from 220 to 300 K. These are comparable to (or even better than) those of the Pb/Ba-based ceramics, which could be attributed to a barrier layer of CaTiO3_3 on the surface of the CaCu3_3Ti4_4O12_{12} grains. The composite dielectric ceramics reported here are environmentally benign as they do not contain Ba/Pb.Comment: 4 pages, 4 figures, Appl. Phys. Lett. (scheduled on July 25, 2005

    Magnetic control of large room-temperature polarization

    Full text link
    Numerous authors have referred to room-temperature magnetic switching of large electric polarizations as The Holy Grail of magnetoelectricity.We report this long-sought effect using a new physical process of coupling between magnetic and ferroelectric relaxor nano-regions. Here we report magnetic switching between the normal ferroelectric state and the ferroelectric relaxor state. This gives both a new room-temperature, single-phase, multiferroic magnetoelectric, PbZr0.46Ti0.34Fe0.13W0.07O3, with polarization, loss (<4%), and resistivity (typically 108 -109 ohm.cm) equal to or superior to BiFeO3, and also a new and very large magnetoelectric effect: switching not from +Pr to negative Pr with applied H, but from Pr to zero with applied H of less than a Tesla. This switching of the polarization occurs not because of a conventional magnetically induced phase transition, but because of dynamic effects: Increasing H lengthens the relaxation time by x500 from 100 ?s, and it couples strongly the polarization relaxation and spin relaxations. The diverging polarization relaxation time accurately fits a modified Vogel-Fulcher Equation in which the freezing temperature Tf is replaced by a critical freezing field Hf that is 0.92 positive/negative 0.07 Tesla. This field dependence and the critical field Hc are derived analytically from the spherical random bond random field (SRBRF) model with no adjustable parameters and an E2H2 coupling. This device permits 3-state logic (+Pr,0,negative Pr) and a condenser with >5000% magnetic field change in its capacitance.Comment: 20 pages, 5 figure

    Tetragonal tungsten bronze compounds: relaxor vs mixed ferroelectric - dipole glass behavior

    Full text link
    We demonstrate that recent experimental data (E. Castel et al J.Phys. Cond. Mat. {\bf 21} (2009), 452201) on tungsten bronze compound (TBC) Ba2_2Prx_xNd1−x_{1-x}FeNb4_4O15_{15} can be well explained in our model predicting a crossover from ferroelectric (x=0x=0) to orientational (dipole) glass (x=1x=1), rather then relaxor, behavior. We show, that since a "classical" perovskite relaxor like Pb(Mn1/3_{1/3} Nb2/3_{2/3})O3_3 is never a ferroelectric, the presence of ferroelectric hysteresis loops in TBC shows that this substance actually transits from ferroelectric to orientational glass phase with xx growth. To describe the above crossover theoretically, we use the simple replica-symmetric solution for disordered Ising model.Comment: 5 two-column pages, 4 figure

    Quasi-long range order in glass states of impure liquid crystals, magnets, and superconductors

    Full text link
    In this review we consider glass states of several disordered systems: vortices in impure superconductors, amorphous magnets, and nematic liquid crystals in random porous media. All these systems can be described by the random-field or random-anisotropy O(N) model. Even arbitrarily weak disorder destroys long range order in the O(N) model. We demonstrate that at weak disorder and low temperatures quasi-long range order emerges. In quasi-long-range-ordered phases the correlation length is infinite and correlation functions obey power dependencies on the distance. In pure systems quasi-long range order is possible only in the lower critical dimension and only in the case of Abelian symmetry. In the presence of disorder this type of ordering turns out to be more common. It exists in a range of dimensions and is not prohibited by non-Abelian symmetries.Comment: 32 page

    Landau Theory of Domain Wall Magnetoelectricity

    Get PDF
    We calculate the exact analytical solution to the domain wall properties in a multiferroic system with two order parameters that are coupled bi-quadratically. This is then adapted to the case of a magnetoelectric multiferroic material such as BiFeO3, with a view to examine critically whether the domain walls can account for the enhancement of magnetization reported for thin films fo this material, in view of the correlation between increasing magnetization and increasing volume fraction of domain walls as films become thinner. The present analysis can be generalized to describe a class of magnetoelectric devices based upon domain walls rather than bulk properties.Comment: 9 pages, 4 figure

    Aging in the Relaxor Ferroelectric PMN/PT

    Full text link
    The relaxor ferroelectric (PbMn1/3_{1/3}Nb2/3_{2/3}O3_3)1−x_{1-x}(PbTiO3_3)x_{x}, x=0.1x=0.1, (PMN/PT(90/10)) is found to exhibit several regimes of complicated aging behavior. Just below the susceptibility peak there is a regime exhibiting rejuvenation but little memory. At lower temperature, there is a regime with mainly cumulative aging, expected for simple domain-growth. At still lower temperature, there is a regime with both rejuvenation and memory, reminiscent of spin glasses. PMN/PT (88/12) is also found to exhibit some of these aging regimes. This qualitative aging behavior is reminiscent of that seen in reentrant ferromagnets, which exhibit a crossover from a domain-growth ferromagnetic regime into a reentrant spin glass regime at lower temperatures. These striking parallels suggest a picture of competition in PMN/PT (90/10) between ferroelectric correlations formed in the domain-growth regime with glassy correlations formed in the spin glass regime. PMN/PT (90/10) is also found to exhibit frequency-aging time scaling of the time-dependent part of the out-of-phase susceptibility for temperatures 260 K and below. The stability of aging effects to thermal cycles and field perturbations is also reported.Comment: 8 pages RevTeX4, 11 figures; submitted to Phys. Rev.

    Low Symmetry Phase in (001) BiFeO3_3 Epitaxial Constrained Thin Films

    Full text link
    The lattice of (001)-oriented BiFeO3_3 epitaxial thin film has been identified by synchrotron x-ray diffraction. By choosing proper scattering zones containing the fixed (001) reflection, we have shown that low-symmetry phases similar to a MAM_A phase exist in the thin film at room temperature. These results demonstrate a change in phase stability from rhombohedral in bulk single crystals, to a modified monoclinic structure in epitaxial thin films

    Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3}

    Full text link
    We examine a simple model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3 (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-scale Monte Carlo simulation. We demonstrate that the phase diagram of PIN is qualitatively reproduced by this minimum model. Some properties characteristic of relaxors such as nano-scale domain formation, slow dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.
    • …
    corecore