91 research outputs found

    Renin-Angiotensin-Aldosterone System in Heart Failure: Focus on Nonclassical Angiotensin Pathways as Novel Upstream Targets Regulating Aldosterone

    Get PDF
    Aldosterone plays an important role in the regulation of blood pressure, body fluid, and electrolyte homeostasis. Overactivation of aldosterone/mineralocorticoid receptor (MR) pathway leads to hypertension, atherosclerosis, vascular damage, heart failure, and chronic kidney disease and is involved in many other diseases associated with endothelial dysfunction, inflammation, fibrosis, and metabolic disorders. Aldosterone is a final product of the renin-angiotensin-aldosterone system (RAAS), and its production is activated by angiotensin II, while angiotensin-(1–7) negatively regulates angiotensin II-mediated aldosterone production and in some experimental models inhibits aldosterone-induced damage in target tissues. In fact, the aldosterone/mineralocorticoid receptor-dependent pathway is regulated upstream by at least two major axes of RAAS: classical axis (ACE/Ang II) and nonclassical axis (ACE2/Ang-(1–7)). The relative balance between these two axes determines aldosterone production and activity. To better understand the regulation of aldosterone activity in physiology and diseases, it is important to analyze the role of aldosterone/mineralocorticoid receptor-dependent pathways in the context of upstream angiotensin pathways as some of the recently described mechanisms of RAAS represent possible novel upstream targets to inhibit aldosterone/mineralocorticoid receptor-dependent responses. In this review, we highlight the complexity of angiotensin pathways focusing on their role in various tissues in heart failure, with particular emphasis on nonclassical pathways including protective ACE2/Ang-(1–7) axis and detrimental Ang-(1–12)/chymase/Ang II axis

    Functional and biochemical endothelial profiling in vivo in a murine model of endothelial dysfunction : comparison of effects of 1-methylnicotinamide and angiotensin-converting enzyme inhibitor

    Get PDF
    Although it is known that 1-methylnicotinamide (MNA) displays vasoprotective activity in mice, as yet the effect of MNA on endothelial function has not been demonstrated in vivo. Here, using magnetic resonance imaging (MRI) we profile the effects of MNA on endothelial phenotype in mice with atherosclerosis (ApoE/LDLR(-/-)) in vivo, in comparison to angiotensin (Ang) -converting enzyme (ACE) inhibitor (perindopril), with known vasoprotective activity. On a biochemical level, we analyzed whether MNA- or perindopril-induced improvement in endothelial function results in changes in ACE/Ang II-ACE2/Ang-(1–7) balance, and L-arginine/asymmetric dimethylarginine (ADMA) ratio. Endothelial function and permeability were evaluated in the brachiocephalic artery (BCA) in 4-month-old ApoE/LDLR(-/-) mice that were non-treated or treated for 1 month or 2 months with either MNA (100 mg/kg/day) or perindopril (10 mg/kg/day). The 3D IntraGate(®)FLASH sequence was used for evaluation of BCA volume changes following acetylcholine (Ach) administration, and for relaxation time (T(1)) mapping around BCA to assess endothelial permeability using an intravascular contrast agent. Activity of ACE/Ang II and ACE2/Ang-(1–7) pathways as well as metabolites of L-arginine/ADMA pathway were measured using liquid chromatography/mass spectrometry-based methods. In non-treated 6-month-old ApoE/LDLR(-/-) mice, Ach induced a vasoconstriction in BCA that amounted to –7.2%. 2-month treatment with either MNA or perindopril resulted in the reversal of impaired Ach-induced response to vasodilatation (4.5 and 5.5%, respectively) and a decrease in endothelial permeability (by about 60% for MNA-, as well as perindopril-treated mice). Improvement of endothelial function by MNA and perindopril was in both cases associated with the activation of ACE2/Ang-(1–7) and the inhibition of ACE/Ang II axes as evidenced by an approximately twofold increase in Ang-(1–9) and Ang-(1–7) and a proportional decrease in Ang II and its active metabolites. Finally, MNA and perindopril treatment resulted in an increase in L-arginine/ADMA ratio by 107% (MNA) and 140% (perindopril), as compared to non-treated mice. Functional and biochemical endothelial profiling in ApoE/LDLR(-/-) mice in vivo revealed that 2-month treatment with MNA (100 mg/kg/day) displayed a similar profile of vasoprotective effect as 2-month treatment with perindopril (10 mg/kg/day): i.e., the improvement in endothelial function that was associated with the beneficial changes in ACE/Ang II-ACE2/Ang (1–7) balance and in L-arginine/ADMA ratio in plasma

    Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside

    Get PDF
    Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are effective substrates for NAD synthesis, which may act as vasoprotective agents. Here, we characterize the effects of NMN and NR on endothelial inflammation and dysfunction and test the involvement of CD73 in these effects. Materials and methods: The effect of NMN and NR on IL1β- or TNFα-induced endothelial inflammation (ICAM1 and vWF expression), intracellular NAD concentration and NAD-related enzyme expression (NAMPT, CD38, CD73), were studied in HAECs. The effect of NMN and NR on angiotensin II-induced impairment of endotheliumdependent vasodilation was analyzed in murine aortic rings. The involvement of CD73 in NMN and NR effects was tested using CD73 inhibitor-AOPCP, or CD73/^{-/-} mice. Results: 24 h-incubation with NMN and NR induced anti-inflammatory effects in HAEC stimulated by IL1β or TNFα, as evidenced by a reduction in ICAM1 and vWF expression. Effects of exogenous NMN but not NR was abrogated in the presence of AOPCP, that efficiently inhibited extracellular endothelial conversion of NMN to NR, without a significant effect on the metabolism of NMN to NA. Surprisingly, intracellular NAD concentration increased in HAEC stimulated by IL1β or TNFα and this effect was associated with upregulation of NAMPT and CD73, whereas changes in CD38 expression were less pronounced. NMN and NR further increased NAD in IL1β- stimulated HAECs and AOPCP diminished NMN-induced increase in NAD, without an effect on NR-induced response. In ex vivo aortic rings stimulated with angiotensin II for 24 h, NO-dependent vasorelaxation induced by acetylcholine was impaired. NMN and NR, both prevented Ang II-induced endothelial dysfunction in the aorta. In aortic rings taken from CD73/^{-/-} mice NMN effect was lost, whereas NR effect was preserved. Conclusion: NMN and NR modulate intracellular NAD content in endothelium, inhibit endothelial inflammation and improve NO-dependent function by CD73-dependent and independent pathways, respectively. Extracellular conversion of NMN to NR by CD73 localized in the luminal surface of endothelial cells represent important vasoprotective mechanisms to maintain intracellular NAD

    Multi-omic signatures of atherogenic dyslipidaemia : pre-clinical target identification and validation in humans

    Get PDF
    Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH)

    Dynamic metabolic changes during prolonged ex situ heart perfusion are associated with myocardial functional decline

    Get PDF
    Ex situ heart perfusion (ESHP) was developed to preserve and evaluate donated hearts in a perfused beating state. However, myocardial function declines during ESHP, which limits the duration of perfusion and the potential to expand the donor pool. In this research, we combine a novel, minimally-invasive sampling approach with comparative global metabolite profiling to evaluate changes in the metabolomic patterns associated with declines in myocardial function during ESHP. Biocompatible solid-phase microextraction (SPME) microprobes serving as chemical biopsy were used to sample heart tissue and perfusate in a translational porcine ESHP model and a small cohort of clinical cases. In addition, six core-needle biopsies of the left ventricular wall were collected to compare the performance of our SPME sampling method against that of traditional tissue-collection. Our state-of-the-art metabolomics platform allowed us to identify a large number of significantly altered metabolites and lipid species that presented comparable profile of alterations to conventional biopsies. However, significant discrepancies in the pool of identified analytes using two sampling methods (SPME vs. biopsy) were also identified concerning mainly compounds susceptible to dynamic biotransformation and most likely being a result of low-invasive nature of SPME. Overall, our results revealed striking metabolic alterations during prolonged 8h-ESHP associated with uncontrolled inflammation not counterbalanced by resolution, endothelial injury, accelerated mitochondrial oxidative stress, the disruption of mitochondrial bioenergetics, and the accumulation of harmful lipid species. In conclusion, the combination of perfusion parameters and metabolomics can uncover various mechanisms of organ injury and recovery, which can help differentiate between donor hearts that are transplantable from those that should be discarded

    4-Pyridone-3-carboxamide-1-β-D-ribonucleoside Triphosphate (4PyTP), a Novel NAD+ Metabolite Accumulating in Erythrocytes of Uremic Children: A Biomarker for a Toxic NAD+ Analogue in Other Tissues?

    Get PDF
    We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD+ metabolites (nicotinamide, N1-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N1-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD+ from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD+ analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD+ analogue that inhibits IMP dehydrogenase in other cells

    Inorganic Polyphosphate—Regulator of Cellular Metabolism in Homeostasis and Disease

    No full text
    Inorganic polyphosphate (polyP), a simple anionic polymer consisting of even hundreds of orthophosphate units, is a universal molecule present in both simple and complex organisms. PolyP controls homeostatic processes in animals, such as blood coagulation, tissue regeneration, and energy metabolism. Furthermore, this polymer is a potent regulator of inflammation and influences host immune response in bacterial and viral infections. Disturbed polyP systems have been related to several pathological conditions, including neurodegeneration, cardiovascular disorders, and cancer, but we lack a full understanding of polyP biogenesis and mechanistic insights into the pathways through which polyP may act. This review summarizes recent studies that describe the role of polyP in cell homeostasis and show how disturbances in polyP levels may lead to disease. Based on the collected findings, we highlight the possible usage of this polymer as a promising therapeutic tool in multiple pathologies
    corecore