35 research outputs found

    Identification of neuropathology-based subgroups in multiple sclerosis using a data-driven approach

    Get PDF
    Multiple sclerosis (MS) is a heterogeneous disorder with regards to clinical presentation and pathophysiology. Stratification into biologically distinct subgroups could enhance prognostication and efficacious allocation to disease-modifying therapies. In this study, we identified MS subgroups by performing a clustering analysis on neuropathology data collected for MS donors in the Netherlands Brain Bank (NBB) autopsy cohort. The input dataset contained detailed information on white matter lesion load, the proportion of active, mixed active/inactive, inactive and remyelinating lesions, microglia morphology in these lesions, and the presence of microglial nodules, perivascular cuffs and cortical lesions for 228 donors. A factor analysis was performed to reduce noise and redundancy prior to hierarchical clustering with K-means consolidation. Four subgroups with distinct patterns of white matter lesions were identified. These were subsequently validated with additional clinical, neuropathological and genetic data. The subgroups differed with regards to disease progression and duration, the timing of motor, sensory and other relevant signs and symptoms, patterns of cortical lesions and the presence of B cells. Age at MS onset and sex, previously associated with milder forms of MS, did not differ between the subgroups; the subgroups could also not be distinguished based on the manifestation of clinical signs and symptoms. The available genetic data was used to calculate MS polygenic risk scores (PRSs) for donors included in the NBB cohort. The MS PRS did not differ between the subgroups, but was significantly correlated with the first and second dimension of the factor analysis, the latter lending genetic support to our subdivision. Taken together, these findings suggest a complex relationship between neuropathological subgroups and clinical characteristics, indicating that post-mortem cohort studies are critical to better stratify patients and understand underlying neuropathophysiological mechanisms, in order to ultimately achieve personalised medicine in MS

    Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions

    Get PDF
    Multiple sclerosis is a chronic inflammatory, demyelinating disease, although it has been suggested that in the progressive late phase, inflammatory lesion activity declines. We recently showed in the Netherlands Brain Bank multiple sclerosis-autopsy cohort considerable ongoing inflammatory lesion activity also at the end stage of the disease, based on microglia/macrophage activity. We have now studied the role of T cells in this ongoing inflammatory lesion activity in chronic multiple sclerosis autopsy cases. We quantified T cells and perivascular T-cell cuffing at a standardized location in the medulla oblongata in 146 multiple sclerosis, 20 neurodegenerative control and 20 non-neurological control brain donors. In addition, we quantified CD3+, CD4+, and CD8+ T cells in 140 subcortical white matter lesions. The location of CD8+ T cells in either the perivascular space or the brain parenchyma was determined using CD8/laminin staining and confocal imaging. Finally, we analysed CD8+ T cells, isolated from fresh autopsy tissues from subcortical multiple sclerosis white matter lesions (n = 8), multiple sclerosis normal-ap

    Absence of B Cells in Brainstem and White Matter Lesions Associates With Less Severe Disease and Absence of Oligoclonal Bands in MS

    Get PDF
    OBJECTIVE: To determine whether B-cell presence in brainstem and white matter (WM) lesions is associated with poorer pathological and clinical characteristics in advanced MS autopsy cases. METHODS: Autopsy tissue of 140 MS and 24 control cases and biopsy tissue of 24 patients with MS were examined for CD20+ B cells and CD138+ plasma cells. The presence of these cells was compared with pathological and clinical characteristics. In corresponding CSF and plasma, immunoglobulin (Ig) G ratio and oligoclonal band (OCB) patterns were determined. In a clinical cohort of 73 patients, the presence of OCBs was determined during follow-up and compared to status at diagnosis. RESULTS: In 34% of active and 71% of mixed active/inactive lesions, B cells were absent, which correlated with less pronounced meningeal B-cell infiltration (p < 0.0001). The absence of B cells and plasma cells in brainstem and WM lesions was associated with a longer disease duration (p = 0.001), less frequent secondary progressive MS compared with relapsing and primary progressive MS (p < 0.0001 and p = 0.046, respectively), a lower proportion of mixed active/inactive lesions (p = 0.01), and less often perivascular T-cell clustering (p < 0.0001). Moreover, a lower CSF IgG ratio (p = 0.006) and more frequent absence of OCBs (p < 0.0001) were not

    A primary culture of mouse proximal tubular cells, established on collagen-coated membranes.

    Full text link
    A simple method is described to establish primary cultures of kidney proximal tubule cells (PTC) on membranes. The permeable membranes represent a unique culture surface, allowing a high degree of differentiation since both apical and basolateral membranes are accessible for medium. Proximal tubule (PT) segments from collagenase-digested mouse renal cortices were grown for 7 days, by which time cells were organized as a confluent monolayer. Electron microscopic evaluation revealed structurally polarized epithelial cells with numerous microvilli, basolateral invaginations, and apical tight junctions. Immunoblotting for markers of distinct parts of the nephron demonstrated that these primary cultures only expressed PT-specific proteins. Moreover immunodetection of distinct components of the receptor-mediated endocytic pathway and uptake of FITC-albumin indicated that these cells expressed a functional endocytotic apparatus. In addition, primary cultures possessed the PT brush-border enzymes, alkaline phosphatase, and gamma-glutamyl-transferase, and a phloridzin-sensitive sodium-dependent glucose transport at their apical side. Electrophysiological measurements show that the primary cultured cells have a low transepithelial resistance and high short-circuit current that was completely carried by Na(+) similar to a leaky epithelium like proximal tubule cells. This novel method established well-differentiated PTC cultures

    Stress-Axis Regulation by Vitamin D3 in Multiple Sclerosis

    No full text
    IntroductionMultiple sclerosis (MS) has been associated with both a poor vitamin D status and hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis. Since nuclear receptor ligands may regulate each other, we explored the association of vitamin D3 supplements with circadian cortisol levels in a double-blind and placebo-controlled supplementation study.MethodsFemale patients with relapsing-remitting MS received vitamin D3 supplements (4,000 IU/day; n = 22) or placebo (n = 19) during 16 weeks. Salivary cortisol levels, repeatedly measured during the day, and serum 25(OH)D levels were assessed before (T0) and after (T1) this treatment period.ResultsMedian 25(OH)D levels at T1 were 139.9 (interquartile range 123.5–161.2) and 74.5 nmol/L (58.6–88.1) in the vitamin D3 and placebo group, respectively (p &lt; 0.001). Comparisons within and between groups showed no differences in area under the curve (AUC) and slope of the cortisol day curve. Although the AUC of the cortisol awakening response (CAR, sampling each 15 min the first hour after awakening) showed a reduction over time in the vitamin D3 group [39.16 nmol/L (27.41–42.07) at T0 to 33.37 nmol/L (26.75–38.08) at T1] compared to the placebo group [33.90 nmol/L (25.92–44.61) at T0 to 35.00 nmol/L (25.46–49.23) at T1; p = 0.044], there was no significant difference in AUC of CAR at T1 corrected for baseline AUC of CAR (p = 0.066).ConclusionSuppression of HPA-axis activity by vitamin D3 supplements in non-depressed MS patients may be best reflected by CAR as primary outcome measure. Further studies should address this interaction and its potential implications for the disease course of MS.RegistrationThis study was registered on ClinicalTrials.gov (NCT02096133) and EudraCT (2014-000728-97)

    Simvastatin Interferes With Process Outgrowth and Branching of Oligodendrocytes

    No full text
    Statins have attracted interest as a treatment option for multiple sclerosis (MS) because of their pleiotropic antiinflammatory and immunomodulatory effects. However, contradictory results have been described when they are applied to oligodendrocytes (OLGs), the cell type predominantly affected in MS. In this study we focus on the in vitro effect of statins on process outgrowth in OLN-93 cells, a well-characterized OLG-derived cell line, and primary cultures of neonatal rat OLGs. Application of the lipophilic simvastatin, as low as 0.1-1 mu M, disturbs process formation of both cell types, leading to less ramified cells. We show that both protein isoprenylation and cholesterol synthesis are required for the normal differentiation of OLGs. It is further demonstrated that the expression of 2',3'-cyclic-nucleotide-3' phosphodiesterase (CNP) and tubulin is lowered, concomitant with a reduction of membrane-bound CNP as well as tubulin. Therefore, we propose that lack of isoprenylation of CNP could help to explain the altered morphological and biochemical differentiation state of treated OLGs. Moreover, expression of specific myelin markers, such as myelin basic protein, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein, was compromised after treatment. We conclude that simvastatin treatment has detrimental effects on OLG process outgrowth, the prior step in (re)myelination, thereby mortgaging long-term healing of MS lesions. (C) 2010 Wiley-Liss, Inc

    Iron-rich colloids as carriers of phosphorus in streams : A field-flow fractionation study

    No full text
    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments.</p
    corecore