411 research outputs found

    Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses

    Get PDF
    Flow patterns generated by medusan swimmers such as jellyfish are known to differ according the morphology of the various animal species. Oblate medusae have been previously observed to generate vortex ring structures during the propulsive cycle. Owing to the inherent physical coupling between locomotor and feeding structures in these animals, the dynamics of vortex ring formation must be robustly tuned to facilitate effective functioning of both systems. To understand how this is achieved, we employed dye visualization techniques on scyphomedusae (Aurelia aurita) observed swimming in their natural marine habitat. The flow created during each propulsive cycle consists of a toroidal starting vortex formed during the power swimming stroke, followed by a stopping vortex of opposite rotational sense generated during the recovery stroke. These two vortices merge in a laterally oriented vortex superstructure that induces flow both toward the subumbrellar feeding surfaces and downstream. The lateral vortex motif discovered here appears to be critical to the dual function of the medusa bell as a flow source for feeding and propulsion. Furthermore, vortices in the animal wake have a greater volume and closer spacing than predicted by prevailing models of medusan swimming. These effects are shown to be advantageous for feeding and swimming performance, and are an important consequence of vortex interactions that have been previously neglected

    Phase II trial of natalizumab for the treatment of anti-Hu associated paraneoplastic neurological syndromes

    Get PDF
    BACKGROUND: Paraneoplastic neurological syndromes with anti-Hu antibodies (Hu-PNS) have a very poor prognosis: more than half of the patients become bedridden and median survival is less than 12 months. Several lines of evidence suggest a pathogenic T cell-mediated immune response. Therefore, we conducted a prospective open-label phase II trial with natalizumab. METHODS: Twenty Hu-PNS patients with progressive disease were treated with a maximum of three monthly natalizumab cycles (300 mg). The primary outcome measure was functional improvement, this was defined as at least one point decrease in modified Rankin Scale (mRS) score at the last treatment visit. In addition, treatment response was assessed wherein a mRS score ≤3 after treatment was defined as treatment responsive. RESULTS: The median age at onset was 67.8 years (SD 8.4) with a female predominance (n = 17, 85%). The median time from symptom onset to Hu-PNS diagnosis was 5 months (IQR 2–11). Most patients had subacute sensory neuronopathy (n = 15, 75%), with a median mRS of 4 at baseline. Thirteen patients had a tumor, all small cell lung cancer. After natalizumab treatment, two patients (10%) showed functional improvement. Of the remaining patients, 60% had a stable functional outcome, while 30% showed further deterioration. Treatment response was classified as positive in nine patients (45%). CONCLUSIONS: Natalizumab may ameliorate the disease course in Hu-PNS, but no superior effects above other reported immunosuppressive and immunomodulatory were observed. More effective treatment modalities are highly needed. TRIAL REGISTRATION: https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-000675-13/N

    Neurologic syndromes related to anti-GAD65: Clinical and serologic response to treatment

    Get PDF
    OBJECTIVE: Antibodies against glutamic acid decarboxylase 65 (anti-GAD65) are associated with a number of neurologic syndromes. However, their pathogenic role is controversial. Our objective was to describe clinical and paraclinical characteristics of anti-GAD65 patients and analyze their response to immunotherapy. METHODS: Retrospectively, we studied patients (n = 56) with positive anti-GAD65 and any neurologic symptom. We tested serum and CSF with ELISA, immunohistochemistry, and cell-based assay. Accordingly, we set a cutoff value of 10,000 IU/mL in serum by ELISA to group patients into high-concentration (n = 36) and low-concentration (n = 20) groups. We compared clinical and immunologic features and analyzed response to immunotherapy. RESULTS: Classical anti-GAD65-associated syndromes were seen in 34/36 patients with high concentration (94%): stiff-person syndrome (7), cerebellar ataxia (3), chronic epilepsy (9), limbic encephalitis (9), or an overlap of 2 or more of the former (6). Patients with low concentrations had a broad, heterogeneous symptom spectrum. Immunotherapy was effective in 19/27 treated patients (70%), although none of them completely recovered. Antibody concentration reduction occurred in 15/17 patients with available pre- and post-treatment samples (median reduction 69%; range 27%-99%), of which 14 improved clinically. The 2 patients with unchanged concentrations showed no clinical improvement. No differences in treatment responses were observed between specific syndromes. CONCLUSION: Most patients with high anti-GAD65 concentrations (>10,000 IU/mL) showed some improvement after immunotherapy, unfortunately without complete recovery. Serum antibody concen

    A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

    Get PDF
    BACKGROUND: Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. RESULTS: A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. CONCLUSION: The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the higher resolution and mass accuracy of the FT-ICR mass spectrometry prevents the clustering of peaks of different peptides and allows the identification of differentially expressed proteins from the peptide profiles

    Mimics of Autoimmune Encephalitis:Validation of the 2016 Clinical Autoimmune Encephalitis Criteria

    Get PDF
    BACKGROUND AND OBJECTIVES: The clinical criteria for autoimmune encephalitis (AE) were proposed by Graus et al. in 2016. In this study, the AE criteria were validated in the real world, and common AE mimics were described. In addition, criteria for probable anti-LGI1 encephalitis were proposed and validated. METHODS: In this retrospective cohort study, patients referred to our national referral center with suspicion of AE and specific neuroinflammatory disorders with similar clinical presentations were included from July 2016 to December 2019. Exclusion criteria were pure cerebellar or peripheral nerve system disorders. All patients were evaluated according to the AE criteria. RESULTS: In total, 239 patients were included (56% female; median age 42 years, range 1-85). AE was diagnosed in 104 patients (44%) and AE mimics in 109 patients (46%). The most common AE mimics and misdiagnoses were neuroinflammatory CNS disorders (26%), psychiatric disorders (19%), epilepsy with a noninflammatory cause (13%), CNS infections (7%), neurodegenerative diseases (7%), and CNS neoplasms (6%). Common confounding factors were mesiotemporal lesions on brain MRI (17%) and false-positive antibodies in serum (12%). Additional mesiotemporal features (involvement extralimbic structures, enhancement, diffusion restriction) were observed more frequently in AE mimics compared with AE (61% vs 24%; p = 0.005). AE criteria showed the following sensitivity and specificity: possible AE, 83% (95% CI 74-89) and 27% (95% CI 20-36); definite autoimmune limbic encephalitis (LE), 10% (95% CI 5-17) and 98% (95% CI 94-100); and probable anti-NMDAR encephalitis, 50% (95% CI 26-74) and 96% (95% CI 92-98), respectively. Specificity of the criteria for probable seronegative AE was 99% (95% CI 96-100). The newly proposed criteria for probable anti-LGI1 encephalitis showed a sensitivity of 66% (95% CI 47-81) and specificity of 96% (95% CI 93-98). DISCUSSION: AE mimics occur frequently. Common pitfalls in AE misdiagnosis are mesiotemporal lesions (predominantly with atypical features) and false-positive serum antibodies. As expected, the specificity of the criteria for possible AE is low because these criteria represent the minimal requirements for entry in the diagnostic algorithm for AE. Criteria for probable AE (-LGI1, -NMDAR, seronegative) and definite autoimmune LE are applicable for decisions on immunotherapy in early disease stage, as specificity is high.</p

    Exon expression arrays as a tool to identify new cancer genes

    Get PDF
    Background: Identification of genes that are causally implicated in oncogenesis is a major goal in cancer research. An estimated 10-20% of cancer-related gene mutations result in skipping of one or more exons in the encoded transcripts. Here we report on a strategy to screen in a global fashion for such exon-skipping events using PAttern based Correlation (PAC). The PAC algorithm has been used previously to identify differentially expressed splice variants between two predefined subgroups. As genetic changes in cancer are sample specific, we tested the ability of PAC to identify aberrantly expressed exons in single samples. Principal Findings: As a proof-of-principle, we tested the PAC strategy on human cancer samples of which the complete coding sequence of eight cancer genes had been screened for mutations. PAC detected all seven exon-skipping mutants among 12 cancer cell lines. PAC also identified exon-skipping mutants in clinical cancer specimens although detection was compromised due to heterogeneous (wild-type) transcript expression. PAC reduced the number candidate genes/exons for subsequent mutational analysis by two to three orders of magnitude and had a substantial true positive rate. Importantly, of 112 randomly selected outlier exons, sequence analysis identified two novel exon skipping events, two novel base changes and 21 previously reported base changes (SNPs). Conclusions: The ability of PAC to enrich for mutated transcripts and to identify known and novel genetic changes confirms its suitability as a strategy to identify candidate cancer genes

    Addition of serum-containing medium to cerebrospinal fluid prevents cellular loss over time

    Get PDF
    Immediately after sampling, leukocyte counts in native cerebrospinal fluid (CSF) start to decrease rapidly. As the time lapse between CSF collection to analysis is not routinely registered, the clinical significance of decreasing cell counts in native CSF is not known. Earlier data suggest that addition of serum-containing medium to CSF directly after sampling prevents this rapid decrease in leukocyte counts and, thus, may improve the accuracy of CSF cell counting and cell characterization. Here, we prospectively examined the effect of storage time after lumbar puncture on counts of leukocytes and their major subsets in both native CSF and after immediate addition of serum-containing medium, measured by flow cytometry and microscopy. We collected CSF samples of 69 patients in tubes with and tubes without serum-containing medium and determined counts of leukocytes and subsets at 30 minutes, 1 hour, and 5 hours after sampling. Compared to cell counts at 30 minutes, no significant decrease in cell number was observed in CSF with serum-containing medium 1 and 5 hours after sampling, except for the granulocytes at 1 hour. In native CSF, approximately 50% of leukocytes and all their subsets were lost after 1 hour, both in flow cytometric and microscopic counting. In 6/7 (86%) samples with mild pleocytosis (5–15 × 106 leukocytes/l), native CSF at 1 hour was incorrectly diagnosed as normocellular. In conclusion, addition of serum-containing medium to CSF directly after sampling prevents cell loss and allows longer preservation of CSF cells prior to analysis, both for microscopic and flow cytometric enumeration. We suggest that this protocol results in more accurate CSF cell counts and may prevent incorrect conclusions based on underestimated CSF cell counts

    An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions

    Get PDF
    Autoantibodies are increasingly used as biomarkers in the detection of autoimmune disorders and cancer. Disease specific antibodies are generally detected by their binding to specific antigens. As an alternative approach, we propose to identify specific complementarity determining regions (CDR) of IgG that relate to an autoimmune disorder or cancer instead of the specific antigen(s). In this manuscript, we tested the technical feasibility to detect and identify CDRs of specific antibodies by mass spectrometry. We used a commercial pooled IgG preparation as well as purified serum IgG fractions that were spiked with different amounts of a fully human monoclonal antibody (adalimumab). These samples were enzymatically digested and analyzed by nanoLC Orbitrap mass spectrometry. In these samples, we were able to identify peptides derived from the CDRs of adalimumab. These peptides could be detected at an amount of 110 attomole, 5 orders of magnitude lower than the total IgG concentration in these samples. Using higher energy collision induced dissociation (HCD) fragmentation and subsequent de novo sequencing, we could successfully identify 50% of the detectable CDR peptides of adalimumab. In addition, we demonstrated that an affinity purification with anti-dinitrophenol (DNP) monoclonal antibody enhanced anti-DNP derived CDR detection in a serum IgG background. In conclusion, specific CDR peptides could be detected and sequenced at relatively low levels (attomole-femtomole range) which should allow the detection of clinically relevant CDR peptides in patient samples

    Anti-Hu antibodies activate enteric and sensory neurons.

    Get PDF
    IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-β-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca(++) imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction

    Citología vaginal en cerdas: determinación de patrones celulares en relación con la fase del ciclo estral.

    Get PDF
    Reproductivamente, la cerda se clasifica como poliéstrica continua, con un ciclo estral de 21 días promedio, que se divide en una fase folicular (proestro y estro); y una fase luteal (metaestro y diestro). Durante este ciclo participan diferentes hormonas que inducen cambios comportamentales, anatómicos e histológicos en las cerdas. Estos últimos pueden observarse mediante el uso de citología vaginal exfoliativa2. El objetivo del trabajo fue determinar mediante citología vaginal exfoliativa los distintos tipos celulares presentes en cada estadio del ciclo estral de la cerda. El estudio se realizó en una granja de 2800 madres. Se seleccionaron 31 hembras al momento del destete. Se tomaron muestras para estudios citológicos. Durante la observación microscópica se identificaron y contaron células epiteliales vaginales (células parabasales, intermedias, superficiales y escamas) estableciendo el porcentaje promedio de cada tipo celular. Se compararon dos grupos celulares: grupo 1 (parabasales e intermedias) vs grupo 2 (superficiales y escamas) según Rodgers 19933. Se observó un descenso progresivo del grupo 1 desde el 1er día del proestro hacia el final del estro, a la inversa del grupo 2. En relación al metaestro, el % de ambos grupos fue similar. En el diestro temprano se observó un predominio de células del grupo 2, mientras que, en el diestro tardío, predominaron las células del grupo 1
    corecore