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Abstract

Background: Identification of genes that are causally implicated in oncogenesis is a major goal in cancer research. An
estimated 10–20% of cancer-related gene mutations result in skipping of one or more exons in the encoded transcripts.
Here we report on a strategy to screen in a global fashion for such exon-skipping events using PAttern based Correlation
(PAC). The PAC algorithm has been used previously to identify differentially expressed splice variants between two
predefined subgroups. As genetic changes in cancer are sample specific, we tested the ability of PAC to identify aberrantly
expressed exons in single samples.

Principal Findings: As a proof-of-principle, we tested the PAC strategy on human cancer samples of which the complete
coding sequence of eight cancer genes had been screened for mutations. PAC detected all seven exon-skipping mutants
among 12 cancer cell lines. PAC also identified exon-skipping mutants in clinical cancer specimens although detection was
compromised due to heterogeneous (wild-type) transcript expression. PAC reduced the number of candidate genes/exons
for subsequent mutational analysis by two to three orders of magnitude and had a substantial true positive rate.
Importantly, of 112 randomly selected outlier exons, sequence analysis identified two novel exon skipping events, two novel
base changes and 21 previously reported base changes (SNPs).

Conclusions: The ability of PAC to enrich for mutated transcripts and to identify known and novel genetic changes confirms
its suitability as a strategy to identify candidate cancer genes.
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Introduction

Cancer is driven by mutations in genes that control the

proliferation of cells, their survival and their integrity. Screens

aimed at identifying such cancer genes often use chromosomal

location and/or functional properties to select candidates genes for

subsequent mutation analysis [1–4]. Although many candidate

cancer gene loci have been identified, the labor-intensive mutation

analysis severely hampers finding the corresponding cancer gene.

Other gene search strategies have focused on aberrant gene

expression patterns to identify candidates. For example, gene

mutants that result in premature termination codons were

identified by screening for genes that were specifically expressed

following chemical inhibition of nonsense mediated RNA decay

[5]. Furthermore, fusion genes in prostate cancer were identified

by screening for outliers in a large cohort of gene-expression

profiles [6].

Human cancer gene mutations frequently result in the skipping

of one or several exons from the encoded transcripts [7–9]. Exon-

skipping mutations may be caused by nucleotide substitutions

within the consensus splice sites or by deletions that span entire

exons. In addition, exon-skipping mutations may be caused by

relatively small intragenic insertions, deletions or duplications.

Even though exon-skipping mutations represent an estimated 10–

20% of all cancer-related gene mutations [4,9–12], no high

throughput method has been available to screen for such

mutations. Here, we describe Pattern Based Correlation (PAC)

as an approach to identify candidate cancer genes by screening for

exon-skipping events in a global fashion. Detailed mutation

analysis is then restricted only to the PAC-identified outlier exons.

As a proof-of-principle, we demonstrate the efficacy of the PAC

strategy on previously identified exon-skipping mutations in breast

cancer cell lines and in clinical brain tumor samples. We also

demonstrate that PAC can identify novel exon skipping events
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with underlying genetic changes in known cancer genes and in

randomly-selected PAC-identified outlier exons.

Results

Outlier exon identification by Pattern Based Correlation
(PAC)

In this study we have developed a new approach to screen exon-

skipping events in human cancer samples. Because mutations in

cancer often are highly heterogeneous with respect to their

intragenic location, individual tumors often express unique RNA

species. Screening for mutations that result in skipping of one or

more exons in the encoded transcript therefore requires screening

for unique, exon-skipped, transcripts within a specific sample

cohort. Briefly, exon-level expression profiles are generated using

Affymetrix Human Exon Arrays, which determine the expression

level of virtually all exons present in the human genome. The

PAttern based Correlation (PAC) algorithm is then used to

calculate the predicted expression level of each exon (or probe set).

We then identify outlier exons by subtracting the predicted

expression level of exons from their measured expression level,

with values equaling zero when the measured expression level of

an exon was similar to its predicted expression level (formulated in

detail under Methods). The PAC algorithm has been used to

identify differential splicing between predefined groups [13]. In

this study, we have tested the PAC algorithm for its ability to

identify aberrantly expressed exons in single samples of a well

defined cohort of cell lines or tumors. PAC effectively normalizes

the variability in gene expression levels between samples and, in a

single sample, normalizes the variability in signal intensity between

probe sets of the same transcript (Fig. 1).

PAC detects exon-skipping events in breast cancer cell
lines

We tested the feasibility of the PAC strategy on a panel of 12

human breast cancer cell lines that had been screened for

mutations in seven tumor suppressor genes: BRCA1, CDH1,

MAP2K4, PTEN, p16, p53 and RB1 [14–18], and unpublished

results). Mutation analysis was performed by sequencing of the

complete coding sequences of the genes and analysis of all

mutations on both genomic gene fragments and transcripts.

Together, the 12 cell lines contained seven gene mutants that

should be detectable by PAC, as they resulted in the skipping of

eight exons from among four tumor suppressor genes (mutations

are detailed in Table 1). We have explored the PAC strategy at

different cut-off levels, identifying outlier exons that were

expressed less than 16-fold, 8-fold, 4-fold, 2.8-fold and 2.5-fold

than their predicted expression level (i.e. PAC values of -4.0, -3.0, -

2.0, -1.5 and -1.3, respectively). Outlier exons were identified

without prior knowledge of the mutation data.

From the total of 3.4 million core probe sets that we assayed for

the 12 cell lines (290,000 core probe sets per sample), PAC

identified 21,151 (0.6%) outlier probe sets at PAC value 24.0 and

94,590 (2.8%) outlier probe sets at PAC value 21.3 (Fig. 2A). All

probe sets at PAC values ,22.0 (34,137 probe sets corresponding

to 31,357 exons and 10,247 genes) are listed in supplementary

data Table S1. When all PAC values are plotted in a frequency

histogram, a tail towards the negative end is observed (Fig. 2A).

This skewed distribution gives a rough estimation of the false

positive rate at the various PAC levels. PAC of the seven fully

characterized tumor suppressor genes in the 12 cell lines involved

analysis of 1,200 exons (1,752 probe sets). PAC correctly detected

six of the eight skipped exons when using PAC value 24.0, seven

skipped exons were detected at PAC value 22.0 and all eight

skipped exons were detected at PAC value 21.3 (Fig. 2C).

Importantly, the number of false positive outlier exons was

substantially reduced at PAC value 24.0 as compared to PAC

value 21.3, resulting in an increase of the true positive rate from

9% to 24% of the identified outlier exons (Fig. 2D). For

comparison, random sampling of 24/1200 exons has a .85%

probability of not finding any true positive mutation and only a

,1028 chance of finding 6 or more. For the known cancer genes

used in our study, the true positive rate of our approach thus by far

exceeds random exon selection. In this respect, the reduction of

the number of false positive candidate genes may initially be far

more beneficial for a gene search project than accurate

identification of all true positive outlier exons. Together, our

results show that the PAC strategy is reliable in detecting exon-

skipping mutants in cancer cell lines.

Figure 1. PAC detection of an exon-skipping PTEN mutant. (A) Normalized expression data of all exons within the PTEN gene. Each exon probe
set is represented by a dot in the solid line; multiple probe sets may be directed against the same exon. (B) PAC normalizes the variability in gene
expression levels between samples and, in a single sample, the variability in signal intensity between probe sets of the same transcript. PAC
calculation therefore allows rapid detection of skipping of PTEN exon 4 in breast cancer cell line MDA-MB-468 due to a PTEN c.253+1G.T splice site
mutation that we previously had identified [17].
doi:10.1371/journal.pone.0003007.g001
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Table 1. Detection of exon-skipping mutants by PAC.

Tumor sample Gene Mutation mRNA PAC detection

OCUB-F CDH1 c.49_163del r.49_163del115 (Ex2) detected

MDA-MB-134VI CDH1 c.688_832del r.688_832del145 (Ex6) detected

MPE600 CDH1 c.1138_1320del r.1138_1320del183 (Ex9) detected

CAMA-1 CDH1 c.1712-1G.A r.1566_1712del147 (Ex11) detected

MDA-MB-468 PTEN c.253+1G.T r.210_253del44 (Ex4) detected

MDA-MB-453 p53 c.994_1182del r.994_1182del189 (Ex10-11) detected

HCC1937 RB1 c.2212_2325del r.2212_2325del114 (Ex22) detected

Glioblastoma 67 EGFR c.89_889del r.89_889del801 (Ex2-7) not detected

Glioblastoma 96 EGFR c.89_889del r.89_889del801 (Ex2-7) detected

Glioblastoma 142 EGFR c.89_889del r.89_889del801 (Ex2-7) detected

Glioblastoma 149 EGFR c.89_889del r.89_889del801 (Ex2-7) not detected

Glioblastoma 163 EGFR c.89_889del r.89_889del801 (Ex2-7) not detected

Glioblastoma 164 EGFR c.89_889del r.89_889del801 (Ex2-7) not detected

Stated are mutations that result in the expression of an aberrant transcript variant in breast cancer cell lines (top) and clinical glioblastoma samples (bottom). All
mutations were determined by sequencing genomic DNA fragments as well as transcripts, where the cDNA sequence c.1 corresponds to the adenosine residue of the
ATG initiation codon in the Genbank reference sequence. Genbank accession numbers: Z13009, NM_000314, NM_000546, NM_000321 and NM_005228.3 for CDH1,
PTEN, p53, RB1 and EGFR, respectively. Detection of the mutations by PAC was at PAC value 21.3.
doi:10.1371/journal.pone.0003007.t001

Figure 2. Performance of PAC to detect exon-skipping mutants. (A) and (B) Total number of PAC-detected outlier probe sets from among
290,000 core probe sets in 12 breast cancer cell lines and in 14 glioblastomas, respectively. (C) Number of skipped exons detected by PAC as a
percentage of all eight skipped exons present in the breast cancer cell lines, or as a percentage of the 36 skipped EGFR exons present in the
glioblastomas (see Table 1). (D) Total number of outlier exons (true plus false positives) and number of true positive outlier exons detected by PAC
among the seven tumor suppressor genes and the EGFR oncogene. True positive outlier exons include all PAC detected skipped exons and two
missense mutations (PTEN c.274G.C in CAMA1, MAP2K4 c.551C.G in MDA-MB-134VI).
doi:10.1371/journal.pone.0003007.g002
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PAC performance in samples with heterogeneous
transcript expression

Similar to other genetic screening methods, PAC is most suited

to detect homozygous genetic changes. For example, the lowest

PAC value when 50% wild-type transcripts are present (as may be

the case for a heterozygous genetic change) is 21.0. The

somewhat compromised detection of skipped exons at PAC value

24.0 as compared to PAC value 21.3 (i.e. six vs. all eight skipped

exons) in our panel of breast cancer cell lines therefore may have

been caused by the expression of a second aberrant transcript that

still includes (part of) the exon. Indeed, a second CDH1 transcript

length of minor intensity was detected in CAMA-1 (Fig. 3A), the

splice site mutant that had been detected only at PAC value 21.3.

To further asses the performance of PAC in samples with

heterogeneous (wild-type and mutant) transcript expression, we

performed PAC on 14 clinical glioblastoma specimens (selected to

contain .70% tumor nuclei) that had genomic amplifications of

the EGFR oncogene. Glioblastomas with EGFR amplifications

frequently carry an intragenic deletion of exons 2 through 7,

resulting in expression of the constitutively active EGFRvIII

isoform [8,19]. However, glioblastomas expressing the EGFRvIII

isoform also frequently express wild-type EGFR transcripts. This

heterogeneous EGFR expression is related to amplification of the

EGFR locus prior to the deletion of exons [20], although non-

malignant cells in the glioblastoma specimens may also express

EGFR. Of the fourteen glioblastoma samples used in this study, six

expressed EGFRvIII (a total of 36 skipped exons) of which five also

expressed significant levels of wild-type EGFR transcripts as

determined by quantitative Real-Time PCR (qPCR) (Fig. 3B)

(insufficient RNA remained of the sixth sample with EGFRvIII

expression to perform qPCR).

From the total of 4.1 million core probe sets that we assayed for

these 14 samples (290,000 core probe sets per sample), PAC

identified 1,646 (0.04%) outlier probe sets at PAC value 24.0 and

39,936 (1.0%) outlier probe sets at PAC value 21.3 (Fig. 2B). PAC

thus identified three to ten-fold less outlier exons in the

glioblastomas as compared to the breast cancer cell lines

(Fig. 2A). All probe sets at PAC values ,22.0 (11,287 probe

sets, corresponding to 10,903 exons and 6,264 genes) are listed in

supplementary data Table S1. This smaller number of outlier

exons in the glioblastomas may be related to their homogeneous

histopathology and their highly similar gene expression profiles

[13,21], to the presence of non-neoplastic cells in the tumor

samples, or may reflect sampling biases due to small cohort sizes.

PAC of the EGFR gene in the 14 glioblastomas involved the

analysis of 392 exons (434 probe sets). PAC detected two of six

EGFRvIII expressing tumors (12 of the 36 skipped exons) at PAC

values 22.0 and lower (Table 1 and Fig. 2C). Of the two

glioblastomas with EGFRvIII that had been detected by PAC, one

had significantly (i.e. .5 fold) more mutant than wild-type EGFR

transcripts. In this tumor, the Ct value difference was .2 between

qPCR fragments inside (measuring only wild-type EGFR tran-

scripts) and outside (measuring both wild-type and EGFRvIII

transcripts) the EGFR exon 2–7 deletion region (Fig. 3B). The

other glioblastoma had a similar expression level difference

between wild-type and EGFRvIII transcripts (Ct value difference

of ,1.5) as the three glioblastomas that had not been detected by

PAC, but had lower overall EGFR transcript levels. It appears that

PAC detection of the EGFRvIII isoform is determined by the

overall expression level of EGFR transcripts in combination with

the ratio of EGFRvIII and wild-type EGFR transcripts, where

samples with too high EGFR transcript levels may escape PAC

detection due to saturation of the probe sets involved. These

results show that the PAC strategy can detect exon-skipping

mutants in clinical cancer specimens if the ratio mutant/wild-type

transcript level is high and when probe sets are within the linear

detection range of the microarray.

PAC performance in detecting recurrent outlier exons
PAC performance can also be challenged by recurrent outlier

exons. Such frequently skipped exons will result in an underes-

timation of the exon/transcript ratio in the PAC algorithm and so

increase PAC values. We therefore evaluated the performance of

PAC in detecting recurrent outlier exons by reiterated replace-

ment of EGFRvIII expressing samples with samples that expressed

only wild-type EGFR (Fig. 4A). When six of 14 samples express

EGFRvIII, the deletion of exons 2–7 in GBM67 is not detected by

PAC. PAC values indeed decreased with decreasing ratios of wild-

type versus mutant samples. However, the decrease was relatively

small and resulted in the identification of only one of the six

deleted exons once the ratio had dropped to one mutant sample

among 14 samples. We also simulated PAC detection of recurrent

mutations with two breast cancer cell lines, of which HCC1937

had skipped RB1 exon 22, and we were already able to identify the

mutant from among two samples up to even five mutants from

among six samples (Fig. 4B). These simulation experiments

Figure 3. Compromised detection due to heterogeneous
transcript expression. Skipping of CDH1 exon 11 in breast cancer
cell line CAMA-1 was only detected at PAC value 21.3, likely due to
expression of a second aberrant transcript variant (*) that was detected
by conventional RT-PCR. (B) Expression of EGFR transcripts was detected
in glioblastoma samples by Real-Time RT-PCR, using primers designed
to anneal inside the exon 2–7 deletion region of the EGFRvIII isoform
(gray bars) or outside the deletion region (black bars). Differences in Ct
values between the two transcript fragments are indicative for EGFRvIII
isoform expression levels. All five samples with the EGFRvIII isoform also
expressed significant amounts of wild-type EGFR transcripts, likely
compromising outlier detection by PAC (indicated by ‘‘detected’’ and
‘‘not detected’’). Wild-type, samples with normal transcripts; Controls,
non-malignant brain specimens.
doi:10.1371/journal.pone.0003007.g003
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indicate that PAC performs well in identifying recurrent exon-

skipping mutations.

Detection of nucleotide substitutions and novel genetic
changes by PAC

The performance of PAC was further evaluated by analysis of

outlier exons selected from all candidates at PAC value #22.0 in

breast cancer cell lines and clinical glioblastoma samples. In total,

44 and 68 outlier exons were screened in breast cancer cell lines

and glioblastoma samples respectively. Sequence analysis of PCR

amplified outlier exons identified two novel exon skipping events

and two novel genetic base changes in glioblastoma samples, as

well as a number of previously reported base changes (homozy-

gous SNPs) in breast cancer cell lines (n = 5) and glioblastomas

(n = 16). RT-PCR experiment results are detailed in supplemen-

tary data Table S2.

The majority of genetic changes identified by PAC were single

nucleotide changes, both in breast cancer cell lines (five known

SNPs) and in glioblastomas (two novel base changes and 16 known

SNPs). Moreover, two out of ten previously identified oncogenic

point mutations that did not result in exon skipping events were

also PAC detected in our cohort of breast cancer cell lines:

MAP2K4 c.551C.G in MDA-MB-134VI and PTEN c.274G.C

in CAMA-1; [16,17] (Fig. 5). Single nucleotide mismatches have

been used to define hybridization specificity on other Affymetrix

microarray platforms. By analogy, single nucleotide substitutions

in cancer may also cause reduced hybridization to the probes on

the microarray and thus be detected as outlier exons by PAC.

Indeed, all of the PAC detected base changes and SNPs were

centrally localized within the probe set selection region and

overlap with several of its individual probes (Fig. 5).

One of the PAC identified novel exon skipping events was

predicted to result in a deletion of the four 39 end exons of EGFR

(Fig. 6A). This exon-skipping event was due to a genomic deletion

as determined using semi quantitative PCR on genomic tumor

DNA. Compared to the 59 end of the EGFR locus in GBM157, the

39 end showed less amplification (DCt 22.5) whereas other

samples showed equal amplification between the 59 and 39 end of

the gene (DCt 0.361.9). Similar 39 deletions in EGFR have been

observed previously in gliomas [19]. The second exon-skipping

event predicted by PAC would result in a deletion of exon 30 in

the FCGBP cDNA (Fig. 6B). This deletion will cause a frameshift

that is predicted to result in a truncated protein. The absence of

exon 30 was confirmed by RT-PCR and sequence analysis

(Fig. 6C). Novel identified single base changes include a single base

change 1934C.G (S645C) in the EGFR gene, (Fig. 6A and D),
Figure 4. Performance of PAC to detect recurrent outlier exons.
(A) Simulation experiment to determine PAC performance in detecting
recurrent exon-skipping events among clinical glioblastoma samples,
where mutant samples express the EGFRvIII isoform with deletion of
exons 2 through 7. The cohort of 14 glioblastomas included six mutant
samples that were replaced by wild-type samples through reiteration,
based on their position from left to right in Fig. 3B. Deletion of EGFR
exon 6 in sample GBM67 was detected only as unique mutant sample.
(B) Simulation experiment to determine PAC performance in detecting
recurrent exon-skipping events among breast cancer cell lines, using
the wild-type cell line CAMA-1 and the RB1 exon 22 deletion mutant
HCC1937. The two cell lines were analyzed under various cohort sizes,
with either the wild-type or the mutant cell line as single sample. The
mutant sample was still detected at PAC value 22.0 with five recurrent
mutants among six samples. The average expression level of RB1 exon
22 dropped below PLIER 50 when more than five mutants were
simulated, precluding PAC analysis (see Materials and Methods).
doi:10.1371/journal.pone.0003007.g004

Figure 5. Identification of nucleotide substitutions by PAC. (A)
PAC predicts skipping of the 59 end of PTEN exon 5 in the CAMA-1
breast cancer cell line. This cell line contains a nucleotide substitution
within the identified exon. This base change does not induce exon
skipping but is centrally located within all three probes of the probe set
(B). The central location suggests this mutation causes a reduced
affinity to the probes on the exon-array.
doi:10.1371/journal.pone.0003007.g005

Cancer Gene Identification

PLoS ONE | www.plosone.org 5 August 2008 | Volume 3 | Issue 8 | e3007



and a single base change 946G.A (G316R) in the TLE2 gene

(Fig. 6E). The G316R (946G.A) mutation in TLE2 is rendered

‘‘pathological’’ by PMut (mmb2.pcb.ub.es:8080/PMut/) and ‘‘not

tolerated’’ by SIFT BLink (blocks.fhcrc.org/sift/SIFT_BLink_-

submit.html). In summary, the novel exon skipping events and

base changes identified by analysis of a selected set of outlier exons

confirms the suitability of PAC to identify candidate cancer genes.

Discussion

We have developed an approach that uses PAttern based

Correlation (PAC) to screen for cancer gene mutations that cause

exon skipping in the encoded transcripts. We demonstrate that PAC

correctly detected all of seven previously identified exon-skipping

mutants in breast cancer cell lines and two of six mutants in clinical

glioblastoma samples. The true and false positive rates were

determined at various stringency levels. Importantly, PAC identified

a number of novel genetic changes, including those affecting

splicing, that previously had gone undetected. These novel genetic

changes are either in known cancer genes (EGFR), result in a

frameshift (FCGBP) or are rendered ‘‘not tolerated’’ by gene

prediction algorithms PMut and SIFT BLink (TLE2). Additional

experiments are required to determine whether changes in the novel

candidate cancer genes (FCGBP and TLE2) are indeed oncogenic. A

significant number of nucleotide substitutions that are located

within the probe set selection region are also PAC detected (Fig. 5).

Our results thus classify PAC as a reliable approach to screen for

candidate cancer genes in a global fashion.

Gene expression profiling at the level of individual exons has only

recently become feasible through the release of exon arrays. Here,

we have explored the efficacy of PAC to identify exon-skipping

mutants, but the strategy may also be used to deduce the primary

structure of gene transcripts [13,22]. It is important to note that the

PAC algorithm, detailed under Materials and Methods, is in essence

a simple formula that predicts outlier exons based on fold change

differences between measured and predicted exon expression levels.

Other approaches can also be used to identify outliers (e.g. .n

standard deviations from the mean expression level) but need to

account for the non-linearity in gene expression levels between

samples (especially for cancer genes) and the limited sample size.

Because of the high true positive rates obtained by PAC, we did not

further explore alternative statistical approaches.

The PAC algorithm is independent of array platform or

organism, allowing application of the PAC strategy in a wide

variety of biological systems. Several algorithms for exon-level

expression profiling are commercially available, including Strata-

gene ArrayAssist (www.stratagene.com), Partek Genomics Suite

(www.partek.com) and Genomatix Suite (www.genomatix.de).

Although each of these software packages is relatively straight-

forward, important advantages of PAC are that it allows detection

of unique outlier exons without any prior knowledge of the

encoding gene or its transcript structure and that it does not

require predefined subgroups of samples with differential expres-

sion of the outlier exons.

As with any global screening strategy, PAC has its preconditions

for detecting outlier exons. First and foremost, identification of

Figure 6. PAC Identification of novel genetic changes. (A) PAC detection of novel genetic changes in EGFR. PAC predicted skipping of the last
four exons of GBM157 and the 59 end of exon 17 in GBM172. Semi-quantitative PCR on genomic DNA confirmed the deletion in GBM157 (not shown).
(B) PAC predicts skipping of exon 30 in the FCGBP gene in GBM60. (C) RT-PCR confirmed the FCGBP exon skipping event in GBM60; other tumors did
not show this exon skipping. (D) Direct sequencing identified a single base change in EGFR in GBM172 (as predicted by PAC, see Fig. 6A). (E)
Confirmation of a PAC predicted change in the TLE2 gene in GBM60. The nucleotide substitution overlaps with individual probes of the probe set.
doi:10.1371/journal.pone.0003007.g006
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outlier exons requires their transcript expression level to be within

the linear detection range of the exon array, which is determined

by their transcript expression level as well as the hybridization

efficiency and specificity of the probe sets involved. The

constituency of the test samples is another consideration,

particularly when both mutant and wild-type transcripts may be

expressed. For example, the breast cancer cell line cohort included

two splice site mutants that escaped detection by PAC because

each had a second transcript length of major intensity that resulted

from cryptic splicing (BRCA1 c.5396+1G.A in MDA-MB-436

[14] and p16 c.150+2T.C in MDA-MB-436 (Nagel et al.,

submitted for publication). Furthermore, PAC detection of the

EGFRvIII transcript isoform in clinical glioblastomas was deter-

mined by the overall expression level of EGFR transcripts, that was

near the limits of linear detection in all five EGFRvIII

glioblastomas, but also by the ratio of the EGFRvIII isoform

versus wild-type EGFR transcripts (Fig. 3B). A corollary is that

PAC performance may be compromised in detecting an outlier

exon when wild-type transcripts represent more than one-fourth of

all transcripts of that particular gene, which could be the case in

tumor samples with less than 75% neoplastic cells. However,

expression levels of mutant and wild-type alleles typically are

disproportional to their allele frequency and detection by PAC

thus again is determined by the (relative) expression level of the

outlier transcript. PAC therefore performs best in the absence of

wild-type transcript expression. Homozygous transcripts are

predominantly found among tumor suppressor genes, where often

one allele is mutated accompanied by loss of the other allele.

The influence of allele ratios was further stressed in our

simulations of recurrent outlier detection by PAC: The EGFRvIII

isoform in GBM67 was detected only once it was present as a

unique outlier among 14 samples, whereas it had not been

detected in our original PAC screen that included five other

EGFRvIII expressing glioblastomas (Fig. 4A). However, this sub

optimal PAC performance appeared not related to the recurrence

of outliers, as recurrent outliers were easily identified among cell

lines 2 even when present in five out of six cell lines (Fig. 4B). The

simulation experiments also revealed that two cell lines were

sufficient to reliably detect outlier exons and that more than eight

cell lines did not further improve PAC performance, whereas for

clinical tumor samples ten appeared the minimum but twenty

would be preferred (Fig. 4).

How efficient might PAC be in detecting mutations in cancer

genomes? From our selection of outlier exons, we identified ,20%

(21/112) SNPs, ,2% (2/112) novel base changes and ,2% (2/

112) exon skipping events. When including all nucleotide

substitutions, the false positive rate in these experiments is

,76%. By extension, amplification and sequencing 1,763

reactions on a single sample (all outliers at PAC values ,24.0)

can be expected to yield as much as 34 novel base changes and 34

exon skipping events. Therefore, our approach can be classified as

a highly efficient screening method for candidate cancer genes,

especially when compared to random selection of exons.

Additional studies should then be performed to determine whether

identified changes are causal for the tumor formation and/or

progression, for example by screening for additional mutations

(e.g. deletions, missense mutations) in other tumor samples or by

functional analysis of the identified mutants.

Materials and Methods

Samples
Our collection of 41 publicly-available human breast cancer cell

lines had been subjected to mutational screens of seven tumor

suppressor genes: BRCA1 (Breast Cancer Susceptibility Gene 1;

OMIM 113705), CDH1 (E-cadherin; OMIM 192090), MAP2K4

(MAP Kinase Kinase 4, a.k.a. MKK4; OMIM 601335), PTEN

(Phosphatase and Tensin Homolog; OMIM 601728), p16 (CDK4-

inhibitor, a.k.a. INK4A, CDKN2A; OMIM 600160), p53 (Tumor

Protein p53; OMIM 191170) and RB1 (Retinoblastoma Suscepti-

bility Gene 1; OMIM 180200) [14–18] (Nagel et al. submitted for

publication). Mutational analysis involved sequencing the entire

coding region of these genes on genomic DNA as well as analysis of

the encoded transcript. The twelve breast cancer cell lines used for

this study were: CAMA-1, EVSA-T, HCC1937, MDA-MB-134VI,

MDA-MB-157, MDA-MB-435s, MDA-MB-436, MDA-MB-453,

MDA-MB-468, MPE600, OCUB-F and SK-BR-5. Clinical

glioblastoma specimens were frozen in liquid nitrogen immediately

upon surgical resection from patients at Erasmus University

Medical Center, as described elsewhere [13]. Pathological review

revealed at least 70% tumor nuclei for each specimen. Mutation

analysis of the EGFR oncogene (Epidermal Growth Factor

Receptor; OMIM 131550) in the glioblastomas was performed by

conventional RT-PCR and subsequent sequencing of transcripts

from samples with EGFR amplifications. EGFR transcript expression

was quantified by Real-Time RT-PCR, using primers that

amplified exons 2–3 or exons 22–23 and thus allowed discrimina-

tion of wild-type EGFR transcripts and the EGFRvIII isoform.

Exon-level expression profiling
Total RNA was isolated using the Qiagen RNeasy kit for the

breast cancer cell lines and using Trizol followed by RNeasy for

the glioblastoma specimens [23]. RNA quality was assessed using

the Agilent Bioanalyser, requiring RNA integrity .7.0 [24]. All

further processing of the samples was performed according the

Affymetrix GeneChip Whole Transcript (WT) Sense Target

Labeling Assay. Affymetrix GeneChip Human Exon 1.0 ST

Arrays were used to determine the expression level of virtually all

exons present in the human genome (1.4 million probe sets

covering .1 million exon clusters). For this study, we used

expression data of the 290,000 core probe sets that are supported

by putative full-length mRNA from e.g. the RefSeq database (Geo

dataset accession number GSE9385) . Signal processing was

performed after sketch normalization by using Affymetrix ExACT

1.2.1 software and the PLIER algorithm, described in Affymetrix

GeneChip Exon Array Whitepaper ‘‘Gene Signal Estimates from

Exon Arrays’’ and Technote ‘‘Guide to Probe Logarithmic

Intensity Error (PLIER) Estimation’’ (www.affymetrix.com/sup-

port/technical).

PAttern based Correlation (PAC)
Predicted exon expression levels were calculated by using the

PAC algorithm, described in Whitepaper ‘‘Alternative Transcript

Analysis Methods for Exon Arrays’’, where the predicted

expression level of the exon (Exon-pr) equals the overall expression

of its transcript in that sample (Transcript-m: the meta probe set

expression level) multiplied by the average expression level of that

exon among all samples (Exon-ave) and divided by the average

overall expression of the transcript among all samples (Transcript-

ave), all 2-logarithm transformed. In formula:

2^log ½Exon� pr�~2^log ½Transcript�m��

2^log ½Exon�ave�=2^log ½Transcript�ave�:

PAC values were calculated by subtracting the predicted

expression level of the exon in that sample from its measured
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expression level (Exon-m), again with 2-logarithm transformation:

PAC value~2^log ½Exon�m� � 2^log ½Exon� pr�:

Meta probe set expression levels were calculated using all core

probe sets of a transcript with PLIER signal estimates .50. To

enrich for probe sets with significant expression above back-

ground, PAC values were calculated using exons and transcripts

that had PLIER signal estimates .50 [13]. Identification of outlier

exons was performed without prior knowledge of the mutation

data.

Supporting Information

Table S1 Complete list of outlier exons at PAC values ,22.0

Found at: doi:10.1371/journal.pone.0003007.s001 (13.64 MB

XLS)

Table S2 Summary of PCR confirmation results for a randomly

selected cohort of outlier exons

Found at: doi:10.1371/journal.pone.0003007.s002 (0.04 MB

XLS)
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