25 research outputs found

    PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks

    Get PDF
    Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.España Ministerio de Ciencia e Innovacion SAF2016-80626-REspaña, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) [PIFUN16/18

    Differential Dynamics of ATR-Mediated Checkpoint Regulators

    Get PDF
    The ATR-Chk1 checkpoint pathway is activated by UV-induced DNA lesions and replication stress. Little was known about the spatio and temporal behaviour of the proteins involved, and we, therefore, examined the behaviour of the ATRIP-ATR and Rad9-Rad1-Hus1 putative DNA damage sensor complexes and the downstream effector kinase Chk1. We developed assays for the generation and validation of stable cell lines expressing GFP-fusion proteins. Photobleaching experiments in living cells expressing these fusions indicated that after UV-induced DNA damage, ATRIP associates more transiently with damaged chromatin than members of the Rad9-Rad1-Hus1 complex. Interestingly, ATRIP directly associated with locally induced UV damage, whereas Rad9 bound in a cooperative manner, which can be explained by the Rad17-dependent loading of Rad9 onto damaged chromatin. Although Chk1 dissociates from the chromatin upon UV damage, no change in the mobility of GFP-Chk1 was observed, supporting the notion that Chk1 is a highly dynamic protein

    USP29 Deubiquitinates SETD8 and Regulates DNA Damage-Induced H4K20 Monomethylation and 53BP1 Focus Formation

    No full text
    SETD8 is a histone methyltransferase that plays pivotal roles in several cellular functions, including transcriptional regulation, cell cycle progression, and genome maintenance. SETD8 regulates the recruitment of 53BP1 to sites of DNA damage by controlling histone H4K20 methylation. Moreover, SETD8 levels are tightly regulated in a cell cycle-dependent manner by ubiquitin-dependent proteasomal degradation. Here, we identified ubiquitin-specific peptidase 29, USP29, as a novel regulator of SETD8. Depletion of USP29 leads to decreased SETD8 protein levels, an effect that is independent of the cell cycle. We demonstrate that SETD8 binds to USP29 in vivo, and this interaction is dependent on the catalytic activity of USP29. Wildtype USP29 can deubiquitinate SETD8 in vivo, indicating that USP29 directly regulates SETD8 protein levels. Importantly, USP29 knockdown inhibits the irradiation-induced increase in H4K20 monomethylation, thereby preventing focus formation of 53BP1 in response to DNA damage. Lastly, depletion of USP29 increases the cellular sensitivity to irradiation. These results demonstrate that USP29 is critical for the DNA damage response and cell survival, likely by controlling protein levels of SETD8

    Control of DNA Replication Initiation by Ubiquitin

    No full text
    Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease
    corecore