189,023 research outputs found

    High-power ac/dc variable load simulator

    Get PDF
    Design of medium-power dynamic electrical load simulator has been extended to permit simulation of ac as well as dc loads and to provide for operation at higher power levels. Simulator is internally protected against reverse voltage, overvoltage, overcurrent, and overload conditions

    Hasasia: A Python Package For Pulsar Timing Array Sensitivity Curves

    Get PDF

    An Isotopic analysis of the hydrology and riparian vegetation water sources on Bishop Creek

    Full text link
    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into Bishop Creek below the headwaters is primarily derived from ground water. The average δD and δ18O values are significantly different for surface water and ground water that an isotopic analysis can delineate between these two components of flow. Therefore isotopic shifts along the creek can determine gaining reaches. In addition, by knowing the isotopic signatures of various waters in the watershed, it may be possible to examine tree waters to determine their water source(s)

    Riparian plant water relations along the north fork of the Kings River, California

    Full text link
    Plant water relations of five obligate ripar-ian species were studied along California\u27s North Fork Kings River. Diurnal stomatal conductance, transpi-ration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal conductance occurred early in the day and season during favorable environmental conditions and decreased as air temperature and the vapor pressure difference between the leaf and air increased. Maximum transpiration rates occurred in mid-morning and mid-summer resulting in estimated daily water losses per unit sunlit leaf area of 163-328 mol H2O m-2. Predawn xylem pressure poten-tials remained high in 1986 when streamflows averaged 1.41 m3/s (50 cfs), however they were notably lower in 1987 at 0.7 m3/s (25 cfs)

    Hasasia: A Python Package For Pulsar Timing Array Sensitivity Curves

    Get PDF

    Surface core excitons in III-V semiconductors

    Get PDF
    Recent experiments have shown that the cation core excitons on the (110) surface of many III-V semiconductors have very large binding energies.(^1) They are sometimes reported to be bound by as much as ≳0.8 eV, tightly bound compared to bulk binding energies of ≾0.1 eV. To explore this phenomenon, we have calculated the binding energies and oscillator strengths of core excitons on the (110) surface of GaAs, GaSb, GaP, and InP

    Realistic Sensitivity Curves For Pulsar Timing Arrays

    Get PDF
    We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner

    Realistic Sensitivity Curves For Pulsar Timing Arrays

    Get PDF
    We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner

    Coupled-resonator-induced transparency with a squeezed vacuum

    Full text link
    We present the first experimental observation of quantum fluctuation spectra in two coupled optical cavities with an injected squeezed vacuum light. The quadrature components of the reflected squeezed vacuum spectra are measured by phase sensitive homodyne detector. The experimental results demonstrate coupled-resonator-induced transparency in the quantum regime, in which electromagnetically-induced-transparency-like characteristic of the absorption and dispersion properties of the coupled optical cavities determines the line-shape of the reflected quantum noise spectra.Comment: 4 pages, 4 figures, appear in Phys. Rev. Let

    Constraints on Stirring and Dissipation of MHD Turbulence in Molecular Clouds

    Full text link
    We discuss constraints on the rates of stirring and dissipation of MHD turbulence in molecular clouds. Recent MHD simulations suggest that turbulence in clouds decays rapidly, thus providing a significant source of energy input, particularly if driven at small scales by, for example, bipolar outflows. We quantify the heating rates by combining the linewidth-size relations, which describe global cloud properties, with numerically determined dissipation rates. We argue that, if cloud turbulence is driven on small internal scales, the 12^{12}CO flux (enhanced by emission from weakly supersonic shocks) will be much larger than observed; this, in turn, would imply excitation temperatures significantly above observed values. We reach two conclusions: (1) small-scale driving by bipolar outflows cannot possibly account for cloud support and yield long-lived clouds, unless the published MHD dissipation rates are seriously overestimated; (2) driving on large scales (comparable to the cloud size) is much more viable from an energetic standpoint, and if the actual net dissipation rate is only slightly lower than what current MHD simulations estimate, then the observationally inferred lifetimes and apparent virial equilibrium of molecular clouds can be explained.Comment: 5 pages, 1 figure. To appear in ApJ (2001 April 10
    • …
    corecore