108,400 research outputs found
Vapor diffusion electrode improves fuel cell operation
Vapor diffusion type fuel cell electrode presents a nonwetting barrier to the liquid feedstocks so they may contact the electrolyte only in the vapor state. Thus, it effects feedstock mixing with the electrolyte at the electrolyte/catalyst interface but prevents feedstock decomposition and catalyst poisoning from liquid mingling
The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal
We have identified a conserved nuclear pore localisation signal (NPLS; amino acids 764–838 of EPAC1) in the catalytic domains of the cAMP-sensors, EPAC1 and EPAC2A. Consequently, EPAC1 is mainly localised to the nuclear pore complex in HEK293T cells where it becomes activated following stimulation with cAMP. In contrast, structural models indicate that the cAMP-binding domain of EPAC2A (CNBD1) blocks access to the conserved NPLS in EPAC2A, reducing its ability to interact with nuclear binding sites. Consequently, a naturally occurring EPAC2 isoform, EPAC2B, which lacks CNBD1 is enriched in nuclear fractions, similar to EPAC1. Structural differences in EPAC isoforms may therefore determine their intracellular location and their response to elevations in intracellular cAMP
Interpretation of AIS Images of Cuprite, Nevada Using Constraints of Spectral Mixtures
A technique is outlined that tests the hypothesis Airborne Imaging Spectrometer (AIS) image spectra are produced by mixtures of surface materials. This technique allows separation of AIS images into concentration images of spectral endmembers (e.g., surface materials causing spectral variation). Using a spectral reference library it was possible to uniquely identify these spectral endmembers with respect to the reference library and to calibrate the AIS images
A sharp estimate for the Hardy-Littlewood maximal function
The best constant in the usual Lp norm inequality for the centered
Hardy-Littlewood maximal function on R1 is obtained for the class of all
``peak-shaped'' functions. A positive function on the line is called
``peak-shaped'' if it is positive and convex except at one point. The
techniques we use include convexity and an adaptation of the standard
Euler-Langrange variational method.Comment: Also available at http://www.math.missouri.edu/~stephen/preprints
Minimum Particle Size for Cyclone Dust Separator
Perkins technology wish to separate small soot particles from exhaust gases, and the question posed to the study group was to determine the feasibility of using a cyclone separator to remove these particles. Soot is mostly composed of polycyclicaromatic compounds and results from the incomplete combustion of the diesel fuel in the engine. The average size of the particles formed in the engine is in the range 3 to 10 nm in diameter, but this is known to increase within the exhaust system.
In the first part of this report we determine the minimum particle size that can be removed by centrifugal separation.
The second part discusses the mechanisms for particle growth within the exhaust system in order to estimate the particle growth rate.
In section two we estimate the minimum particle diameter that can be removed by a cyclone separator is around one micron. This estimate is consistent with current applications of hydrocyclones. The particle size measurements by Perkins Technology together with our estimates from section three, suggest that the soot particles are an order of magnitude smaller than this. Although it may be possible to remove some particles less than one micron in diameter with a well designed high-speed cyclone, we do not think it will be possible to remove a substantial proportion of 100 nm or smaller particles.
The growth rate of the particles increases if the particles volume fraction or the polydispersity is increased. Therefore aggregation could be enhanced by the addition of larger particles (d > 1 µm) or water droplets (provided the water does not all vapourise) to the exhaust gas
Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions
We present lattice simulations of a center symmetric dimensionally reduced
effective field theory for SU(2) Yang Mills which employ thermal Wilson lines
and three-dimensional magnetic fields as fundamental degrees of freedom. The
action is composed of a gauge invariant kinetic term, spatial gauge fields and
a potential for the Wilson line which includes a "fuzzy" bag term to generate
non-perturbative fluctuations. The effective potential for the Polyakov loop is
extracted from the simulations including all modes of the loop as well as for
cooled configuration where the hard modes have been averaged out. The former is
found to exhibit a non-analytic contribution while the latter can be described
by a mean-field like ansatz with quadratic and quartic terms, plus a
Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications,
update of reference list
Experimental determination of the turbulence in a liquid rocket combustion chamber
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity
Line Emission in the Brightest Cluster Galaxies of the NOAO Fundamental Plane and Sloan Digital Sky Surveys
We examine the optical emission line properties of Brightest Cluster Galaxies
(BCGs) selected from two large, homogeneous datasets. The first is the X-ray
selected National Optical Astronomy Observatory Fundamental Plane Survey
(NFPS), and the second is the C4 catalogue of optically selected clusters built
from the Sloan Digital Sky Survey Data Release ~3 (SDSS DR3). Our goal is to
better understand the optical line emission in BCGs with respect to properties
of the galaxy and the host cluster. Throughout the analysis we compare the line
emission of the BCGs to that of a control sample made of the other bright
galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest
fraction of BCGs with emission lines (~15%). No trend in the fraction of
emitting BCGs as a function of galaxy mass or cluster velocity dispersion is
found. However we find that, for those BCGs found in cooling flow clusters,
71^{+9}_{-14}% have optical emission. Furthermore, if we consider only BCGs
within 50kpc of the X-ray centre of a cooling flow cluster, the emission-line
fraction rises further to 100^{+0}_{-15}%. Excluding the cooling flow clusters,
only ~10% of BCGs are line emitting, comparable to the control sample of
galaxies. We show that the physical origin of the emission line activity
varies: in some cases it has LINER-like line ratios, whereas in others it is a
composite of star-formation and LINER-like activity. We conclude that the
presence of emission lines in BCGs is directly related to the cooling of X-ray
gas at the cluster centre.Comment: Accepted for publication in MNRAS. 13 pages mn2e style with 7 figures
and 2 table
Frog foams and natural protein surfactants
Foams and surfactants are relatively rare in biology because of their potential to harm cell membranes and other delicate tissues. However, in recent work we have identified and characterized a number of natural surfactant proteins found in the foam nests of tropical frogs and other unusual sources. These proteins, and their associated foams, are relatively stable and bio-compatible, but with intriguing molecular structures that reveal a new class of surfactant activity. Here we review the structures and functional mechanisms of some of these proteins as revealed by experiments involving a range of biophysical and biochemical techniques, with additional mechanistic support coming from more recent site-directed mutagenesis studies
- …