259,043 research outputs found
Frequency and damping of the Scissors Mode of a Fermi gas
We calculate the frequency and damping of the scissors mode in a classical
gas as a function of temperature and coupling strength. Our results show good
agreement with the main features observed in recent measurements of the
scissors mode in an ultracold gas of Li atoms. The comparison between
theory and experiment involves no fitting parameters and thus allows an
identification of non-classical effects at and near the unitarity limit.Comment: 4 pages, 2 figure
Low cost uniform heat source
Electrically powered heat source was developed for ground simulation of isotope heat-source assembly in Brayton power system. Heat source, which operates on ordinary 110 vac power, consists of tungsten filament heating element wound onto a spirally grooved boron nitride core and inserted in a hollowed-out graphite hexahedron
Viscosity and Thermal Relaxation for a resonantly interacting Fermi gas
The viscous and thermal relaxation rates of an interacting fermion gas are
calculated as functions of temperature and scattering length, using a many-body
scattering matrix which incorporates medium effects due to Fermi blocking of
intermediate states. These effects are demonstrated to be large close to the
transition temperature to the superfluid state. For a homogeneous gas in
the unitarity limit, the relaxation rates are increased by nearly an order of
magnitude compared to their value obtained in the absence of medium effects due
to the Cooper instability at . For trapped gases the corresponding ratio
is found to be about three due to the averaging over the inhomogeneous density
distribution. The effect of superfluidity below is considered to leading
order in the ratio between the energy gap and the transition temperature.Comment: 7 pages, 3 figure
Woe from stones: commemoration, identity politics and Estonia's 'War of Monuments'
No abstract available
Viscous relaxation and collective oscillations in a trapped Fermi gas near the unitarity limit
The viscous relaxation time of a trapped two-component gas of fermions in its
normal phase is calculated as a function of temperature and scattering length,
with the collision probability being determined by an energy-dependent s-wave
cross section. The result is used for calculating the temperature dependence of
the frequency and damping of collective modes studied in recent experiments,
starting from the kinetic equation for the fermion distribution function with
mean-field effects included in the streaming terms.Comment: 10 pages, 9 figures; proof version, corrected typo in Eq. (23);
accepted for publication in PR
Space processing applications payload equipment study. Volume 2C: Data acquisition and process control
The services provided by the Spacelab Information Management System are discussed. The majority of the services are provided by the common-support subsystems in the Support Module furnished by the Spacelab manufacturer. The information processing requirements for the space processing applications (SPA) are identified. The requirements and capabilities for electric power, display and control panels, recording and telemetry, intercom, and closed circuit television are analyzed
- …