167,401 research outputs found
Inflatable device for installing strain gage bridges
Methods and devices for installing in a tubular shaft multiple strain gages are disclosed with focus on a method and a device for pneumatically forcing strain gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple strain gages in a tubular shaft. The strain gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces
Analysis of aerothermal loads on spherical dome protuberances
Hypersonic flow over spherical dome protuberances was investigated to determine increased pressure and heating loads to the surface. The configuration was mathematically modeled in a time-dependent three-dimensional analysis of the conservation of mass, momentum (Navier-Stokes), and energy equations. A boundary mapping technique was used to obtain a rectangular parallelepiped computational domain, a MacCormack explicit time-split predictor-corrector finite difference algorithm was used to obtain solutions. Results show local pressures and heating rates for domes one-half, one, and two boundary layer thicknesses high were increased by factors on the order of 1.4, 2, and 6, respectively. Flow over the lower dome was everywhere attached while flow over the intermediate dome had small windward and leeside separations. The higher dome had an unsteady windward separation region and a large leeside separation region. Trailing vortices form on all domes with intensity increasing with dome height. Discussion of applying the results to a thermally bowed thermal protection system are presented
A proposed study of multiple scattering through clouds up to 1 THz
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations
Quantum simulation of correlated-hopping models with fermions in optical lattices
By using a modulated magnetic field in a Feshbach resonance for ultracold
fermionic atoms in optical lattices, we show that it is possible to engineer a
class of models usually referred to as correlated-hopping models. These models
differ from the Hubbard model in exhibiting additional density-dependent
interaction terms that affect the hopping processes. In addition to the
spin-SU(2) symmetry, they also possess a charge-SU(2) symmetry, which opens the
possibility of investigating the -pairing mechanism for superconductivity
introduced by Yang for the Hubbard model. We discuss the known solution of the
model in 1D (where states have been found in the degenerate manifold of
the ground state) and show that, away from the integrable point, quantum Monte
Carlo simulations at half filling predict the emergence of a phase with
coexisting incommensurate spin and charge order.Comment: 10 pages, 9 figure
Quality of life in patients with intermittent claudication
© 2017, The Author(s). Background: Intermittent claudication (IC) is a common condition that causes pain in the lower limbs when walking and has been shown to severely impact the quality of life (QoL) of patients. The QoL is therefore often regarded as an important measure in clinical trials investigating intermittent claudication. To date, no consensus exits on the type of life questionnaire to be used. This review aims to examine the QoL questionnaires used in trials investigating peripheral arterial disease (PAD). Material and methods: A systematic review of randomised clinical trials including a primary analysis of QoL via questionnaire was performed. Trials involving patients with diagnosed PAD were included (either clinically or by questionnaire). Any trial which had QoL as the primary outcome data was included with no limit being placed on the type of questionnaire used. Results: The search yielded a total of 1845 articles of which 31 were deemed appropriate for inclusion in the review. In total, 14 different QoL questionnaires were used across 31 studies. Of the questionnaires 24.06% were missing at least one domain when reported in the results of the study. Mean standard deviation varied widely based on the domain reported, particularly within the SF36. Discussion: Despite previous recommendations for Europewide standardisation of quality of life assessment, to date no such tool exists. This review demonstrated that a number of different questionnaires remain in use, that their completion is often inadequate and that further evidence-based guidelines on QoL assessment are required to guide future research
Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry
We study theoretically two-dimensional single-crystalline sheets of
semiconductors that form a honeycomb lattice with a period below 10 nm. These
systems could combine the usual semiconductor properties with Dirac bands.
Using atomistic tight-binding calculations, we show that both the atomic
lattice and the overall geometry influence the band structure, revealing
materials with unusual electronic properties. In rocksalt Pb chalcogenides, the
expected Dirac-type features are clouded by a complex band structure. However,
in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb
nanogeometry leads to rich band structures, including, in the conduction band,
Dirac cones at two distinct energies and nontrivial flat bands and, in the
valence band, topological edge states. These edge states are present in several
electronic gaps opened in the valence band by the spin-orbit coupling and the
quantum confinement in the honeycomb geometry. The lowest Dirac conduction band
has S-orbital character and is equivalent to the pi-pi* band of graphene but
with renormalized couplings. The conduction bands higher in energy have no
counterpart in graphene; they combine a Dirac cone and flat bands because of
their P-orbital character. We show that the width of the Dirac bands varies
between tens and hundreds of meV. These systems emerge as remarkable platforms
for studying complex electronic phases starting from conventional
semiconductors. Recent advancements in colloidal chemistry indicate that these
materials can be synthesized from semiconductor nanocrystals.Comment: 12 pages, 12 figure
The classical capacity of quantum thermal noise channels to within 1.45 bits
We find a tight upper bound for the classical capacity of quantum thermal
noise channels that is within bits of Holevo's lower bound. This
lower bound is achievable using unentangled, classical signal states, namely
displaced coherent states. Thus, we find that while quantum tricks might offer
benefits, when it comes to classical communication they can only help a bit.Comment: Two pages plus a bi
Four-D global reference atmosphere users manual and programmers manual, part 2
For abstract, see N74-33021
Four-D global reference atmosphere technical description, part 1
An empirical atmospheric model was developed which generates values for pressure, density, temperature, and winds from surface levels to orbital altitudes. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means; (2) quasi-biennial oscillations; and (3) random perturbations to simulate partially the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined from various empirical studies and are added to the monthly mean values. This model has been developed as a computer program called PROFILE which can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The PROFILE program was developed for design applications in the space shuttle program. Other applications of the model are discussed, such as for global circulation and diffusion studies, and for generating profiles for comparison with other atmospheric measurement techniques, (e.g. satellite measured temperature profiles)
Jet Modification in a Brick of QGP Matter
We have implemented the LPM effect into a microscopic transport model with
partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The
Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that
modifies the emission of radiation in the presence of a dense medium. In QCD
this results in a quadratic length dependence for radiative energy loss. This
is an important effect for the modification of jets by their passage through
the QGP.
We verify the leading parton energy loss in the model against the leading
order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result.
We apply our model to the recent observations of the modification of di-jets
at the LHC.Comment: Presented at Panic 1
- …