227,632 research outputs found

    Solar cycle variations in the interplanetary magnetic field

    Get PDF
    ISEE 3 interplanetary magnetic field measurements have been used to extend the NSSDC hourly averaged IMF composite data set through mid-1982. Most of sunspot cycle 20 (start:1964) and the first half of cycle 21 (start:1976) are now covered. The average magnitude of the field was relatively constant over cycle 20 with approx. 5-10% decreases in 1969 and 1971, when the Sun's polar regions changed polarity, and a 20% decrease in 1975-6 around solar minimum. Since the start of the new cycle, the total field strength has risen with the mean for the first third of 1982 being about 40% greater than the cycle 20 average. As during the previous cycle, an approx. 10% drop in IMF magnitude accompanied the 1980 reversal of the solar magnetic field. While the interplanetary magnetic field is clearly stronger during the present solar cycle, another 5-7 years of observations will be needed to determine if cycle 21 exhibits the same modest variations as the last cycle. Accordingly, it appears at this time that intercycle changes in IMF magnitude may be much larger than the intracycle variations

    Spatial dependences in the distant solar wind: Pioneers 10 and 11

    Get PDF
    Pioneer 10, 11 observations of the solar wind and magnetic field between 1 and 20 AU are reviewed. Spatial dependences, which are emphasized, must be inferred in the presence of large temporal variations including solar cycle effects. The separation of spatial and temporal dependences is achieved principally through the use of multipoint observations including baseline measurements at 1 AU. Measurements of the solar wind parameters (radial speed, flux, proton temperature) and of the magnetic field magnitude and components are compared with two theories, the Parker theory which assumes radial, azimuthally symmetric flow and the Goldstein-Jokipii theory which includes effects associated with stream-stream interactions. The observed radial gradients in the proton density and velocity and the magnetic field are consistent with the Parker model. A qualitative dependence of field magnitude on heliomagnetic latitude, i.e., referred to the observed location of the heliospheric current sheet, was derived. The field strength was found to decrease with distance from the current sheet

    Development of optical modulators for measurements of solar magnetic fields

    Get PDF
    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph

    Pedestrian demand modelling of large cities: an applied example from London

    Get PDF
    This paper introduces a methodology for the development of city wide pedestrian demand models and shows its application to London. The approach used for modelling is Multiple Regression Analysis of independent variables against the dependent variable of observed pedestrian flows. The test samples were from manual observation studies of average total pedestrian flow per hour on 237 sample sites. The model will provide predicted flow values for all 7,526 street segments in the 25 square kilometres of Central London. It has been independently validated by Transport for London and is being tested against further observation data. The longer term aim is to extend the model to the entire greater London area and to incorporate additional policy levers for use as a transport planning and evaluation tool

    Fluid mechanics of nodal flow due to embryonic primary cilia

    Get PDF
    Breaking of left–right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal–ventral and anterior–posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, ‘whirling’ primary cilia, tilted towards the posterior, drive a flow implicated in the initial left–right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory

    Mathematical modelling of cilia driven transport of biological fluids

    Get PDF
    Cilia-driven flow occurs in the airway surface liquid, in the female and male reproductive tracts and enables symmetry-breaking in the embryonic node. Viscoelastic rheology is found in healthy states in some systems, whereas in others may characterise disease, motivating the development of mathematical models that take this effect into account. We derive the fundamental solution for linear viscoelastic flow, which is subsequently used as a basis for slender-body theory. Our numerical algorithm allows efficient computation of three-dimensional time-dependent flow, bending moments, power and particle transport. We apply the model to the large-amplitude motion of a single cilium in a linear Maxwell liquid. A relatively short relaxation time of just 0.032 times the beat period significantly reduces forces, bending moments, power and particle transport, the last variable exhibiting exponential decay with relaxation time. A test particle is propelled approximately one-fifth as quickly along the direction of cilia beating for scaled relaxation time 0.032 as in the Newtonian case, and mean volume flow is abolished, emphasizing the sensitivity of cilia function to fluid rheology. These results may have implications for flow in the airways, where the transition from Newtonian to viscoelastic rheology in the peri-ciliary fluid may reduce clearance

    Analytical study of catalytic reactors for hydrazine decomposition. One and two dimensional steady-state programs, computer programs manual

    Get PDF
    Programs manual for one-dimensional and two- dimensional steady state models of catalyzed hydrazine decomposition reaction chamber

    Multichannel operation of an integrated acousto-optic wavelength routing switch for WDM systems

    Get PDF
    Polarization independent acousto-optic tunable filters (PIAOTF's) can operate as transparent wavelength-selective crossconnects to route signals in wavelength division multiplexed optical networks. In this paper, a new low power PIAOTF is characterized as a switch in multiwavelength operation, using four equally spaced lightwave signals with wavelengths between 1546 nm and 1558 nm. Interchannel interference due to sidelobe excitation is lower than -11 dB for single wavelength switching and is equal to -6 dB in the extreme case of simultaneous switching of all wavelength channels. Sources of interport and interchannel crosstalk for single and multiple wavelength switching are identified
    • …
    corecore