1,649 research outputs found
Recommended from our members
Novel mutation in CCBE 1 as a cause of recurrent hydrops fetalis from Hennekam lymphangiectasia-lymphedema syndrome-1.
Whole exome sequencing (WES) was used to determine the etiology of recurrent hydrops fetalis in this case of Hennekam lymphangiectasia-lymphedema syndrome-1. WES is a useful approach for diagnosing rare single-gene conditions with nonspecific phenotypes and should be considered early in the diagnostic process of investigating fetal abnormalities
The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mayorova, T. D., Hammar, K., Winters, C. A., Reese, T. S., & Smith, C. L. The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biology Open, 8, (2019): bio045674, doi:10.1242/bio.045674.The disk-shaped millimeter-sized marine animal, Trichoplax adhaerens, is notable because of its small number of cell types and primitive mode of feeding. It glides on substrates propelled by beating cilia on its lower surface and periodically pauses to feed on underlying microorganisms, which it digests externally. Here, a combination of advanced electron and light microscopic techniques are used to take a closer look at its secretory cell types and their roles in locomotion and feeding. We identify digestive enzymes in lipophils, a cell type implicated in external digestion and distributed uniformly throughout the ventral epithelium except for a narrow zone near its edge. We find three morphologically distinct types of gland cell. The most prevalent contains and secretes mucus, which is shown to be involved in adhesion and gliding. Half of the mucocytes are arrayed in a tight row around the edge of the ventral epithelium while the rest are scattered further inside, in the region containing lipophils. The secretory granules in mucocytes at the edge label with an antibody against a neuropeptide that was reported to arrest ciliary beating during feeding. A second type of gland cell is arrayed in a narrow row just inside the row of mucocytes while a third is located more centrally. Our maps of the positions of the structurally distinct secretory cell types provide a foundation for further characterization of the multiple peptidergic cell types in Trichoplax and the microscopic techniques we introduce provide tools for carrying out these studies.The work was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke and the National Institutes of Health
Terminology of separation methods (IUPAC Recommendations 2017)
This article has an erratum. Doi: 10.1515/pac-2021-1006Recommendations are given concerning the terminology of methods of separation in analytical chemistry, including chromatography, electromigration techniques, and field-flow fractionation and related techniques.Peer reviewe
Acetyl-leucine slows disease progression in lysosomal storage disorders
Acetyl-DL-leucine is a derivative of the branched chain amino acid leucine. In observational clinical studies acetyl-DL-leucine improved symptoms of ataxia, in particular in patients with the lysosomal storage disorder, Niemann-Pick disease type C1. Here, we investigated acetyl-DL-leucine and its enantiomers acetyl-L-leucine and acetyl-D-leucine in symptomatic Npc1-/- mice and observed improvement in ataxia with both individual enantiomers and acetyl-DL-leucine. When acetyl-DL-leucine and acetyl-L-leucine were administered pre-symptomatically to Npc1-/- mice, both treatments delayed disease progression and extended life span, whereas acetyl-D-leucine did not. These data are consistent with acetyl-L-leucine being the neuroprotective enantiomer. Altered glucose and antioxidant metabolism were implicated as one of the potential mechanisms of action of the L enantiomer in Npc1-/- mice. When the standard of care drug miglustat and acetyl-DL-leucine were used in combination significant synergy resulted. In agreement with these pre-clinical data, when Niemann-Pick disease type C1 patients were evaluated after 12 months of acetyl-DL-leucine treatment, rates of disease progression were slowed, with stabilisation or improvement in multiple neurological domains. A beneficial effect of acetyl-DL-leucine on gait was also observed in this study in a mouse model of GM2 gangliosidosis (Sandhoff disease) and in Tay-Sachs and Sandhoff disease patients in individual cases of off-label-use. Taken together, we have identified an unanticipated neuroprotective effect of acetyl-L-leucine and underlying mechanisms of action in lysosomal storage diseases, supporting its further evaluation in clinical trials in lysosomal disorders
PanGEA: Identification of allele specific gene expression using the 454 technology
<p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression.</p> <p>Results</p> <p>We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology</p> <p>Conclusion</p> <p>To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: <url>http://www.kofler.or.at/bioinformatics/PanGEA</url></p
Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity
We present results from monitoring the multi-waveband flux, linear
polarization, and parsec-scale structure of the quasar PKS 1510-089,
concentrating on eight major gamma-ray flares that occurred during the interval
2009.0-2009.5. The gamma-ray peaks were essentially simultaneous with maxima at
optical wavelengths, although the flux ratio of the two wavebands varied by an
order of magnitude. The optical polarization vector rotated by 720 degrees
during a 5-day period encompassing six of these flares. This culminated in a
very bright, roughly 1 day, optical and gamma-ray flare as a bright knot of
emission passed through the highest-intensity, stationary feature (the "core")
seen in 43 GHz Very Long Baseline Array images. The knot continued to propagate
down the jet at an apparent speed of 22c and emit strongly at gamma-ray
energies as a months-long X-ray/radio outburst intensified. We interpret these
events as the result of the knot following a spiral path through a mainly
toroidal magnetic field pattern in the acceleration and collimation zone of the
jet, after which it passes through a standing shock in the 43 GHz core and then
continues downstream. In this picture, the rapid gamma-ray flares result from
scattering of infrared seed photons from a relatively slow sheath of the jet as
well as from optical synchrotron radiation in the faster spine. The 2006-2009.7
radio and X-ray flux variations are correlated at very high significance; we
conclude that the X-rays are mainly from inverse Compton scattering of infrared
seed photons by 20-40 MeV electrons.Comment: 10 pages of text + 5 figures, to be published in Astrophysical
Journal Letters in 201
A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012
We perform a multi-wavelength polarimetric study of the quasar CTA 102 during
an extraordinarily bright -ray outburst detected by the {\it Fermi}
Large Area Telescope in September-October 2012 when the source reached a flux
of F photons cm s.
At the same time the source displayed an unprecedented optical and NIR
outburst. We study the evolution of the parsec scale jet with ultra-high
angular resolution through a sequence of 80 total and polarized intensity Very
Long Baseline Array images at 43 GHz, covering the observing period from June
2007 to June 2014. We find that the -ray outburst is coincident with
flares at all the other frequencies and is related to the passage of a new
superluminal knot through the radio core. The powerful -ray emission is
associated with a change in direction of the jet, which became oriented more
closely to our line of sight (1.2) during the ejection of
the knot and the -ray outburst. During the flare, the optical polarized
emission displays intra-day variability and a clear clockwise rotation of
EVPAs, which we associate with the path followed by the knot as it moves along
helical magnetic field lines, although a random walk of the EVPA caused by a
turbulent magnetic field cannot be ruled out. We locate the -ray
outburst a short distance downstream of the radio core, parsecs from the black
hole. This suggests that synchrotron self-Compton scattering of near-infrared
to ultraviolet photons is the probable mechanism for the -ray
production.Comment: Accepted for publication in The Astrophysical Journa
- …