172,734 research outputs found
Chern-Simons theory and atypical Hall conductivity in the Varma phase
In this letter, we analyze the topological response of a fermionic model
defined on the Lieb lattice in presence of an electromagnetic field. The
tight-binding model is built in terms of three species of spinless fermions and
supports a topological Varma phase due to the spontaneous breaking of
time-reversal symmetry. In the low-energy regime, the emergent effective
Hamiltonian coincides with the so-called Duffin-Kemmer-Petiau (DKP)
Hamiltonian, which describes relativistic pseudospin-0 quasiparticles. By
considering a minimal coupling between the DKP quasiparticles and an external
Abelian gauge field, we calculate both the Landau-level spectrum and the
emergent Chern-Simons theory. The corresponding Hall conductivity reveals an
atypical quantum Hall effect, which can be simulated in an artificial Lieb
lattice.Comment: 5 pages, 3 figures; New version with an improved discussion about our
finding
Conformal QED in two-dimensional topological insulators
It has been shown recently that local four-fermion interactions on the edges
of two-dimensional time-reversal-invariant topological insulators give rise to
a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this
work, we provide a first-principle derivation of this non-Fermi-liquid phase
based on the gauge-theory approach. Firstly, we derive a gauge theory for the
edge states by simply assuming that the interactions between the Dirac fermions
at the edge are mediated by a quantum dynamical electromagnetic field. Here,
the massless Dirac fermions are confined to live on the one-dimensional
boundary, while the (virtual) photons of the U(1) gauge field are free to
propagate in all the three spatial dimensions that represent the physical space
where the topological insulator is embedded. We then determine the effective
1+1-dimensional conformal field theory (CFT) given by the conformal quantum
electrodynamics (CQED). By integrating out the gauge field in the corresponding
partition function, we show that the CQED gives rise to a 1+1-dimensional
Thirring model. The bosonized Thirring Hamiltonian describes exactly a HLL with
a parameter K and a renormalized Fermi velocity that depend on the value of the
fine-structure constant .Comment: (5+4) pages, 2 figure
The development of an integrated modelling system to support decisions on organic farms
This paper was presented at the UK Organic Research 2002 Conference of the Colloquium of Organic Researchers (COR).
An Integrated Decision Support System (IDSS) is developed which synthesises current understanding of organic farming by means of a multiple objective framework incorporating GIS, biophysical models and socio-economic models of the farming goals. The IDSS uses a multitiered concept of a farming system as a collection of micro-enterprises at the field level, with individual resource endowments, objectives and activities. Farm-level decision drivers trickle down to affect the micro-level field enterprise selection. Biophysical models describe typical forage, cereal, root and legume output and a user-friendly interfaces permits easy access and output display via a GIS. A prototype of the IDSS framework, being developed as a part of the SAC organic research programme is presented
Global integration in the banking industry
Lowered regulatory barriers and advances in technology have reduced the cost of supplying banking services across borders. At the same time, growth in activity by multinational corporations has increased the demand for international financial services. As a result, many observers believe that global integration is under way in the banking industry, that banks are expanding their reach across borders, and that many banking markets will therefore develop large foreign components. The authors report on a study conducted by them, along with Qinglei Dai and Steven Ongena, that examined the nationality and international reach of banks that provide short-term financial services across Europe to affiliates of multinational corporations. The present article also looks at time-series data that provide a more recent look at the progress of integration in Europe. Based on a 1996 survey of more than 2,000 affiliates, the study found that an affiliate is most likely to choose a bank headquartered in the nation in which it is operating (a host-nation bank) rather than a bank headquartered in the home country of the affiliate or in a third nation. The affiliate is also more likely to select a bank limited to local or regional operations rather than one with global reach. The findings are consistent with the proposition that affiliates most value a bank that understands the culture, business practices, and regulatory conditions of the country in which the affiliate operates, and that host-nation banks possess a competitive advantage over other banks in this regard. The time-series data--on syndicated loans, foreign bank claims, and the dispersion of consumer goods prices across Europe--are also consistent with the picture drawn from the 1996 survey. The article concludes that banking markets evidently need not become more integrated even as economic activity otherwise becomes increasingly global.Banks and banking ; International finance
Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974
This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response
Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching
Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability con- stants and binding capacities were consistent with literature values of marine NOM, show- ing strong binding with log K values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmole mg C −1 . Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the Biotic Ligand Model (BLM) approach for bioavailability-based metals risk assessment
Recommended from our members
Atmospheric fungal nanoparticle bursts.
Aerosol nanoparticles play an important role in the climate system by affecting cloud formation and properties, as well as in human health because of their deep reach into lungs and the circulatory system. Determining nanoparticle sources and composition is a major challenge in assessing their impacts in these areas. The sudden appearance of large numbers of atmospheric nanoparticles is commonly attributed to secondary formation from gas-phase precursors, but in many cases, the evidence for this is equivocal. We report the detection of a mode of fungal fragments with a mobility diameter of roughly 30 nm released in episodic bursts in ambient air over an agricultural area in northern Oklahoma. These events reached concentrations orders of magnitude higher than other reports of biological particles and show similarities to unclarified events reported previously in the Amazon. These particles potentially represent a large source of both cloud-forming ice nuclei and respirable allergens in a variety of ecosystems
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Correlated versus Uncorrelated Stripe Pinning: the Roles of Nd and Zn Co-Doping
We investigate the stripe pinning produced by Nd and Zn co-dopants in
cuprates via a renormalization group approach. The two dopants play
fundamentally different roles in the pinning process. While Nd induces a
correlated pinning potential that traps the stripes in a flat phase and
suppresses fluctuations, Zn pins the stripes in a disordered manner and
promotes line meandering. We obtain the zero temperature phase diagram and
compare our results with neutron scattering data. A good agreement is found
between theory and experiment.Comment: To appear at the proceedings of the LLD2K Conference Tsukuba, July
2000, Japan. 4 pages, 2 figure
- …