1,336 research outputs found

    SSME single crystal turbine blade dynamics

    Get PDF
    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation

    Analysis and Testing of Powered Tillage Blades

    Get PDF
    Fundamental design considerations for powered rotary tillage blades are presented and discussed. The relationship between blade angular velocity and the geometric dimensions of cutting edges is specified for tillage blades rotating counter to the direction of travel and assuming a typical forward speed for tillage. Analyses showed that a powered blade rotated opposite to the direction of travel can be operated at relatively lower angular velocities than can one rotated in the direction of travel to achieve equivalent blade velocity and acceleration relative to the soil. Furthermore, a blade rotated opposite to the direction of travel requires relatively lower power to achieve equivalent blade velocities relative to the soil. Experiments revealed that, in order to minimize power requirements, the ratio of the tangential velocity of cutting edges on a blade divided by the ground speed should be as low as possible as long as a proper tillage action is obtained

    FAMILIAR ISSUES FROM A WORLD ENGLISHES PERSPECTIVE

    Get PDF
    This paper does not introduce new “issues”, “positions” or “topics” but instead suggests a fresh perspective on some classic themes in English Language Teaching (ELT). The fresh perspective is that provided by the concept of world Englishes

    Advanced composite fuselage technology

    Get PDF
    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development

    In-cell thermodynamics and a new role for protein surfaces

    Get PDF
    Understanding protein thermodynamics as it occurs inside cells is a fundamental goal of biophysics, and, from a practical point of view, will facilitate the design and improvement of protein-based drugs and catalysts. By measuring the temperature dependence of protein stability inside Escherichia coli cells, we show, contrary to predictions, that proteins are not necessarily stabilized inside cells compared with buffer alone. We also show that crowding-induced charge–charge interactions slow folding because of preferential interactions with the unfolded ensemble, and reducing these interactions increases protein stability

    Dairy Farm Business Summary: Southeastern New York Region 1990

    Full text link
    A.E. Ext. 91-17Dairy farmers throughout New York State have been participating in Cornell Cooperative Extension's farm business summary and analysis program since the early 1950's. Each participating farmer receives a comprehensive business summary and analysis of his or her farm business. The information in this report represents an average of the data submitted from farms in the Southeastern New York region

    Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Get PDF
    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines

    What is Wrong with Water Barometers?

    Get PDF
    Every student who studies atmospheric pressure in physics or chemistry learns the principles behind the construction of barometers. Cistern barometers, such as those found in most laboratories, consist of a long glass tube containing an inverted column of liquid having an open end in a cistern of the liquid. Students learn that the column of liquid is supported by air pressure and is equal in weight to a column of air of the same diameter

    A Simulation Model for Assessing Alternate Strategies for Beef Production with Land, Energy and Economic Constraints

    Get PDF
    A computer model has been developed to analyze alternate management strategies and energy and economic constraints. Daily production of beef animals and growing crops is simulated in response to prevailing conditions and system interactions using the GASP IV simulation language. Complete inventories of plant dry matter, animal status, production resources and economic net worth are maintained over the simulation period

    Experimental Validation of a Forward Looking Interferometer for Detection of Clear Air Turbulence due to Mountain Waves

    Get PDF
    The Forward-Looking Interferometer (FLI) is an airborne sensor concept for detection and estimation of potential atmospheric hazards to aircraft. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry technologies that have been developed for satellite remote sensing. The FLI is being evaluated for its potential to address multiple hazards, during all phases of flight, including clear air turbulence, volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing. In addition, the FLI is being evaluated for its potential to detect hazardous runway conditions during landing, such as wet or icy asphalt or concrete. The validation of model-based instrument and hazard simulation results is accomplished by comparing predicted performance against empirical data. In the mountain lee wave data collected in the previous FLI project, the data showed a damped, periodic mountain wave structure. The wave data itself will be of use in forecast and nowcast turbulence products such as the Graphical Turbulence Guidance and Graphical Turbulence Guidance Nowcast products. Determining how turbulence hazard estimates can be derived from FLI measurements will require further investigation
    corecore