4,410 research outputs found

    Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment

    Get PDF
    Cortical atrophy is a biomarker of Alzheimer’s disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI

    Exercise Training and Functional Connectivity Changes in Mild Cognitive Empairment and Healthy Elders

    Get PDF
    Background: Effective interventions are needed to improve brain function in mild cognitive impairment (MCI), an early stage of Alzheimer’s disease (AD). The posterior cingulate cortex (PCC)/precuneus is a hub of the default mode network (DMN) and is preferentially vulnerable to disruption of functional connectivity in MCI and AD. Objective: We investigated whether 12 weeks of aerobic exercise could enhance functional connectivity of the PCC/precuneus in MCI and healthy elders. Methods: Sixteen MCI and 16 healthy elders (age range = 60–88) engaged in a supervised 12-week walking exercise intervention. Functional MRI was acquired at rest; the PCC/precuneus was used as a seed for correlated brain activity maps. Results: A linear mixed effects model revealed a significant interaction in the right parietal lobe: the MCI group showed increased connectivity while the healthy elders showed decreased connectivity. In addition, both groups showed increased connectivity with the left postcentral gyrus. Comparing pre to post intervention changes within each group, the MCI group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and insular lobes, and the cerebellum. Healthy elders did not demonstrate any significant connectivity changes. Conclusion: The observed results show increased functional connectivity of the PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise training. The protective effects of exercise training on cognition may be realized through the enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. Whether these effects of exercise training may delay further cognitive decline in patients diagnosed with MCI remains to be demonstrated

    Work time, work interference with family, and psychological distress.

    Get PDF
    Despite public concern about time pressures experienced by working parents, few scholars have explicitly examined the effects of work time on work–family conflict. The authors developed and tested a model of the predictors of work time and the relationships between time, work interference with family (WIF), and psychological distress. Survey data came from 513 employees in a Fortune 500 company. As predicted, several work and family characteristics were significantly related to work time. In addition, work time was significantly, positively related to WIF, which in turn was significantly, negatively related to distress. The results suggest that work time fully or partially mediates the effects of many work and family characteristics on WIF. For decades, American workers have appeared content with the length of their work weeks. Since World War II, labor unions in the United States have overwhelmingly chosen to fight for higher wages rather than less work time (Schor, 1991). In the last few years, however, there are growing signs that many Americans are once again yearning for shorter work hours. Articles in the popular media chronicle the difficulties faced by employees who wor

    Effect of acute tensile loading on gender-specific tendon structural and mechanical properties.

    Get PDF
    Stretching is commonly used prior to exercise, as it is thought to reduce the risk of injury, and it is also used in the preconditioning of tendon grafts. As tendon properties have been shown to be different between genders, it is proposed that stretching will differentially affect the structure. Here we examine the effect of acute stretch on the mechanical properties of both male and female medial gastrocnemius tendon. Female [20 years ± 1 (SEM), n = 17] and male (22 years ±1, n = 18) subjects underwent a 5-min passive dorsiflexion stretch. Prior to and post stretch medial gastrocnemius tendon stiffness (K), length (1) and cross-sectional area (csa) were measured using ultrasonography and dynamometry. Stiffness and Young's modulus (ε) were significantly reduced with stretch for both genders (p < 0.05). Females showed significantly (p < 0.05) greater pre- to poststretch decreases in K (22.4 vs. 8, 8%) and e (20.5 vs. 8.4%) in comparison to males. The present results show that stretching acutely reduces stiffness of the medial gastrocnemius tendon in females and males, with females showing significantly greater change. The observed disparity between genders may be due in part to variations in tendon moment arm and intrinsic differences in tendon composition. These differential changes in tendon mechanical properties have functional, motor control, and injury risk implications, as well as possible implications for preconditioning of tendon grafts

    Spontaneous Chelation-Driven Reduction of the Neptunyl Cation in Aqueous Solution.

    Get PDF
    Octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) siderophore analogues are known to be efficacious chelators of the actinide cations, and these ligands are also capable of facilitating both activation and reduction of actinyl species. Utilizing X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies, as well as cyclic voltammetry measurements, herein, we elucidate chelation-based mechanisms for driving reactivity and initiating redox processes in a family of neptunyl-HOPO and CAM complexes. Based on the selected chelator, the ability to control the oxidation state of neptunium and the speed of reduction and concurrent oxo group activation was demonstrated. Most notably, reduction kinetics for the NpV O2 +/ /NpIV redox couple upon chelation by the ligands 3,4,3-LI(1,2-HOPO) and 3,4,3-LI(CAM)2 (1,2-HOPO)2 was observed to be faster than ever reported, and in fact quicker than we could measure using either X-ray absorption spectroscopy or electrochemical techniques

    Sizes and Shapes of Young Star Cluster Light Profiles in M83

    Get PDF
    We measure the radii and two-dimensional light profiles of a large sample of young, massive star clusters in M83 using archival HST/WFC3 imaging of seven adjacent fields. We use GALFIT to fit the two-dimensional light profiles of the clusters, from which we find effective (half-light) radii, core radii, and slopes of the power-law (EFF) profile (η\eta). We find lognormal distributions of effective radius and core radius, with medians of \approx2.5 pc and \approx1.3 pc, respectively. Our results provide strong evidence for a characteristic size of young, massive clusters. The average effective radius and core radius increase somewhat with cluster age. Little to no change in effective radius is observed with increasing galactocentric distance, except perhaps for clusters younger than 100 Myr. We find a shallow correlation between effective radius and mass for the full cluster sample, but a stronger correlation is present for clusters 200-300 Myr in age. Finally, the majority of the clusters are best fit by an EFF model with index η3.0\eta\leq3.0. There is no strong evidence for change in η\eta with cluster age, mass, or galactocentric distance. Our results suggest that clusters emerge from early evolution with similar radii and are not strongly affected by the tidal field of M83. Mass loss due to stellar evolution and/or GMC interactions appear to dominate cluster expansion in the age range we study.Comment: 34 pages, 11 figures, 3 tables, accepted by MNRAS. Machine-readable table attached (full version of Table 3). To obtain, download the source file from the "Other formats" link abov

    TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells

    Get PDF
    Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity
    corecore