1,381 research outputs found

    Diode Laser-Induced Fluorescence of Xenon Ion Velocity Distributions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77011/1/AIAA-2005-4406-547.pd

    Evaluation of a hybrid antimicrobial restriction process at a large academic medical center

    Get PDF
    We conducted a retrospective review of a hybrid antimicrobial restriction process demonstrating adherence to appropriate use criteria in 72% of provisional-only orders, in 100% of provisional orders followed by ID orders, and in 97% of ID-initiated orders. Therapy interruptions occurred in 24% of provisional orders followed by ID orders

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    Controlled formation of metastable germanium polymorphs

    Get PDF
    The nucleation of metastable germanium polymorphs on decompression is studied using in situ synchrotron x-ray diffraction. We show that the transition pathway is critically dependent on the hydrostaticity. Quasihydrostatic conditions result in the nucleation of the rhombohedral r8 phase, followed by the cubic bc8 and hexagonal diamond phases. In contrast, the presence of shear yields the tetragonal st12 phase. Thus, targeted nucleation of a metastable polymorph is now possible. This observation has implications for the technological exploitation of Ge, but also for other tetrahedral systems

    The Ultraviolet Imaging Telescope: Instrument and Data Characteristics

    Get PDF
    The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro observatory on the Space Shuttle Columbia in December 1990 and again on the Space Shuttle Endeavor in March 1995. Ultraviolet (1200-3300 Angstroms) images of a variety of astronomical objects, with a 40 arcmin field of view and a resolution of about 3 arcsec, were recorded on photographic film. The data recorded during the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. This paper discusses in detail the design, operation, data reduction, and calibration of UIT, providing the user of the data with information for understanding and using the data. It also provides guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film.Comment: 44 pages, LaTeX, AAS preprint style and EPSF macros, accepted by PAS

    Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system

    Get PDF
    Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals

    University of Kentucky Measurements of Wind, Temperature, Pressure and Humidity in Support of LAPSE-RATE Using Multisite Fixed-Wing and Rotorcraft Unmanned Aerial Systems

    Get PDF
    In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights consist of thermodynamic and kinematic variables (air temperature, humidity, pressure, wind speed and direction) and include vertical profiles up to 900 m above the ground level and horizontal transects up to 1500 m in length. These measurements have been quality controlled and are openly available in the Zenodo LAPSE-RATE community data repository (https://zenodo.org/communities/lapse-rate/, last access: 23 July 2020), with the University of Kentucky data available at https://doi.org/10.5281/zenodo.3701845 (Bailey et al., 2020)

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations
    corecore