981 research outputs found

    Flame Imaging System

    Get PDF
    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame

    Health Educator Perspectives on Seeking Medicaid Reimbursement in Indiana

    Get PDF
    Health education is a growing field. However, there is confusion about the role delineation of health education specialists (HES) and other health education (HE) providers. Additionally, recent reimbursement opportunities allow employers to bill for HE services but offer confusing language regarding eligible service-providing professionals. This study surveyed health educators in Indiana to assess knowledge, attitudes, and perceived abilities to bill Medicaid and other insurers for HE services. Using a cross-sectional research design, an original 22-item Web-based questionnaire was developed and distributed to all Certified Health Education Specialist/Master Certified Health Education Specialist (CHES/MCHES) practitioners residing in Indiana. Additional respondents were recruited using a snowball technique, as original respondents asked to share the survey with colleagues. A final data set of 61 respondents was analyzed. All respondents’ organizations provided HE services, with the majority indicating they do not charge and do not bill for HE services. Additionally, 60% of the respondents agreed that HES should be reimbursed for services, and the vast majority believed reimbursement to be important for the field. With recent reimbursement opportunities for HE and preventative health services, it is important that HES advocate for the profession and for potential reimbursement opportunities, such as Medicaid, to enhance the field and support HES jobs

    KINEMATIC ANALYSIS OF MEN BOBSLED PUSH STARTS

    Get PDF
    The purpose of this study was to provide a descriptive analysis of selected kinematic variables associated with the push start for brakemen in the two-man bobsled. Eleven male bobsledders served as subjects for this study. The subjects were videotaped at 120 Hz during competition at the Lake Placid, NY bobsled track as they were competing for positions on the men’s 2004 National Bobsled Team. Selected groups of variables measured at specific events in this study included step length, frequency, and foot contact time; COM velocity; and trunk, knee, and elbow angles. A relationship of 0.63 was determined between start time and finish time; an exploratory correlational analysis between start time and COM velocity at 2nd step take-off (TO) was -0.63. Start time is of critical importance in determining final race time

    Potency of a human monoclonal antibody to diphtheria toxin relative to equine diphtheria anti-toxin in a guinea pig intoxication model

    Get PDF
    Prompt administration of anti-toxin reduces mortality following Corynebacterium diphtheriae infection. Current treatment relies upon equine diphtheria anti-toxin (DAT), with a 10% risk of serum sickness and rarely anaphylaxis. The global DAT supply is extremely limited; most manufacturers have ceased production. S315 is a neutralizing human IgG1 monoclonal antibody to diphtheria toxin that may provide a safe and effective alternative to equine DAT and address critical supply issues. To guide dose selection for IND-enabling pharmacology and toxicology studies, we dose-ranged S315 and DAT in a guinea pig model of diphtheria intoxication based on the NIH Minimum Requirements potency assay. Animals received a single injection of antibody premixed with toxin, were monitored for 30 days, and assigned a numeric score for clinical signs of disease. Animals receiving \u3e /= 27.5 microg of S315 or \u3e /= 1.75 IU of DAT survived whereas animals receiving \u3c /= 22.5 microg of S315 or \u3c /= 1.25 IU of DAT died, yielding a potency estimate of 17 microg S315/IU DAT (95% CI 16-21) for an endpoint of survival. Because some surviving animals exhibited transient limb weakness, likely a systemic sign of toxicity, DAT and S315 doses required to prevent hind limb paralysis were also determined, yielding a relative potency of 48 microg/IU (95% CI 38-59) for this alternate endpoint. To support advancement of S315 into clinical trials, potency estimates will be used to evaluate the efficacy of S315 versus DAT in an animal model with antibody administration after toxin exposure, more closely modeling anti-toxin therapy in humans

    Plural-wavelength flame detector that discriminates between direct and reflected radiation

    Get PDF
    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories

    In Vivo Protection with Human Monoclonal Antibody S315 following Challenge with Diphtheria Toxin

    Get PDF
    Background: Morbidity and mortality from Corynebacterium diphtheriae is reduced by prompt administration of equine-derived diphtheria anti-toxin (DAT), which is in short supply worldwide. MassBiologics has developed a human monoclonal antibody (S315) to diphtheria toxin to provide a safer alternative to DAT and address critical supply issues. S315 prevents toxin binding to its putative host receptor and S315 pre-mixed with toxin increased survival in a guinea pig model of intoxication. To further evaluate the ability of S315 to provide in vivo protection, we established a post-exposure treatment model. Methods: Female Hartley guinea pigs (300-350g) were challenged subcutaneously with diphtheria toxin (0.03 to 0.09 Lf, limit of flocculation) to identify the minimum lethal dose. To evaluate anti-toxin efficacy, DAT or S315 was administered five hours post-toxin challenge and animals monitored for 30 days for signs of illness (lethargy, dehydration, weak limbs). Serum anti-diphtheria toxin antibodies were measured by ELISA and Vero cell toxin neutralization assays. Results: The minimum lethal toxin dose was 0.09 Lf. To determine the protective dose of DAT, 0.2 IU, 1.0 IU or 5.0 IU was administered intravenously post-toxin challenge (n=4/cohort). All 0.2 IU or 1.0 IU DAT-treated animals died, while one animal treated with 5.0 IU survived. DAT was subsequently evaluated at 5.0 IU, 10 IU, and 20 IU and compared to a cohort receiving 3.5 mg of S315. All untreated animals died within 72 hours and all antibody-treated animals survived. Dehydration was observed more frequently in the 5 IU and 10 IU DAT cohorts compared to the 20 IU and S315 cohorts. Conclusions: Treatment with S315 after diphtheria toxin exposure is protective; further studies will define a minimum effective dose of S315. This model mimics the route and timing of anti-toxin treatment in humans and provides a rigorous preclinical evaluation of a human antibody replacement for equine DAT

    Structure-based Design of Broadly Neutralizing HCV Antibody and Vaccine

    Get PDF
    Hepatitis C virus (HCV) chronically infects nearly 200 million people worldwide. Antibodies have the potential to prevent establishment of chronic HCV infection in individuals exposed to the virus. Several broadly neutralizing monoclonal antibodies capable of binding HCV surface glycoproteins have been identified, including HCV1 identified by MassBiologics at UMMS, which targets a highly conserved linear epitope. We utilized the recently solved structure of the HCV1-bound epitope to identify regions of the antibody that could be modified to potentially improve binding to a mutation (N415K) which facilitates escape from neutralization. Based on systematic in silico mutagenesis of HCV1 residues in the Rosetta protein modeling program, a number of single or double antibody mutants were selected for in vitro evaluation. The mutated antibodies were synthesized and their ability to neutralize HCV pseudoviruses expressing either wild-type epitope sequence or the N415K variant was evaluated. Antibodies with mutations on the heavy chain, R65Q and V50L, demonstrated improved neutralizing activity against the N415K escape mutant without impacting their ability to neutralize wild type virus. We also sought to design a novel HCV vaccine that could focus the response to a small conserved neutralizing epitope of the virus defined by HCV1. The HCV1 epitope structure was used to search a large dataset of known protein structures from the Protein Data Bank, resulting in designs of scaffolds that were predicted to stably accommodate the epitope. These epitope-presenting scaffold proteins have been made and will be screened in animal studies to determine their potential as vaccine candidates for HCV prevention

    The K giant stars from the LAMOST survey data I: identification, metallicity, and distance

    Full text link
    We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about 2 million LAMOST spectra observed during the pilot survey and the first year survey, we select 298,036 K giant candidates. The metallicities of the sample are also estimated with uncertainty of 0.13∼0.290.13\sim0.29\,dex based on the equivalent widths of Mgb_{\rm b} and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the estimated distance modulus at K=11K=11\,mag, which is the median brightness of the K giant sample, is about 0.6\,mag, corresponding to ∼30\sim30% in distance. As a scientific verification case, the trailing arm of the Sagittarius stream is clearly identified with the selected K giant sample. Moreover, at about 80\,kpc from the Sun, we use our K giant stars to confirm a detection of stream members near the apo-center of the trailing tail. These rediscoveries of the features of the Sagittarius stream illustrate the potential of the LAMOST survey for detecting substructures in the halo of the Milky Way.Comment: 24 pages, 20 figures, submitted to Ap

    Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats

    Get PDF
    Factors influencing the efficacy of insectivorous vertebrates in providing natural pest control services inside crops at increasing distances from the crop edge are poorly understood. We investigated the identity of vertebrate predators (birds and bats) and removal of sentinel prey (mealworms and beetles) from experimental feeding trays in cotton crops using prey removal trials, camera traps and observations. More prey was removed during the day than at night, but prey removal was variable at the crop edge and dependent on the month (reflecting crop growth and cover) and time of day. Overall, the predation of mealworms and beetles was 1-times and 13-times greater during the day than night, respectively, with predation on mealworms 3-5 times greater during the day than night at the crop edge compared to 95 m inside the crop. Camera traps identified many insectivorous birds and bats over crops near the feeding trays, but there was no evidence of bats or small passerines removing experimental prey. A predation gradient from the crop edge was evident, but only in some months. This corresponded to the foraging preferences of open-space generalist predators (magpies) in low crop cover versus the shrubby habitat preferred by small passerines, likely facilitating foraging away from the crop edge later in the season. Our results are in line with Optimal Foraging Theory and suggest that predators trade-off foraging behaviour with predation risk at different distances from the crop edge and levels of crop cover. Understanding the optimal farm configuration to support insectivorous bird and bat populations can assist farmers to make informed decisions regarding in-crop natural pest control and maximise the predation services provided by farm biodiversity
    • …
    corecore