1,900 research outputs found

    Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics

    Get PDF
    AbstractMechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load–displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which ‘indentation moduli’ and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease

    Coupling ratio tuning of direct UV-written X-couplers for cascaded power splitters in WDM networks

    No full text
    We present a study of low polarisation sensitivity 2 degrees X-couplers with 20% coupling ratio tuning via refractive index asymmetry, attaining 50:50 power splitting at 1550nm. The device has less than 5% coupling ratio variation over 30nm in the C-band and &lt;0.7dB polarisation dependent loss

    Radiocarbon Date List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern North Atlantic

    Full text link
    Date List X contains an annotated listing of 213 radiocarbon dates determined on samples from marine and terrestrial environments. The marine samples were collected from the East Greenland, Iceland, Spitzbergen, and Norwegian margins, Baffin Bay, and Labrador Sea. The terrestrial samples were collected from Vestfirdir, Iceland and Baffin Island. The samples were submitted by INSTAAR and researchers affiliated with INSTAAR\u27s Micropaleontology Laboratory under the direction of Dr.’s John T. Andrews and Anne E. Jennings. All of the dates from marine sediment cores were determined from either shells or foraminifera (both benthic and planktic). All dates were obtained by the Accelerator Mass Spectrometry (AMS) method. Regions of concentrated marine research include: Baffin Bay, Baffin Island, Labrador Sea, East Greenland fjords, shelf and slope, Denmark Strait, the southwestern and northwestern Iceland shelves, and Vestfirdir, Iceland. The non-marine radiocarbon dates are from peat, wood, plant microfossils, and mollusc. The radiocarbon dates have been used to address a variety of research objectives such as: 1. determining the timing of northern hemisphere high latitude environmental changes including glacier advance and retreat, and 2. assessing the accuracy of a fluctuating reservoir correction. Thus, most of the dates constrain the timing, rate, and interaction of late Quaternary paleoenvironmental fluctuations in sea level, glacier extent, sediment input, and changes in ocean circulation patterns. Where significant, stratigraphic and sample contexts are presented for each core to document the basis for interpretations

    The effect of incorporating the midge resistance (Sm1) gene in wheat

    Get PDF
    Non-Peer ReviewedOrange wheat blossom midge, Sitodiplosis mosellana (Géhin), was first detected in Manitoba in 1901, but now is present in all three prairie provinces of western Canada. In severe infestations, this insect may cause significant yield losses to spring wheat. To mitigate losses, midge-resistant wheat varietal blends, consisting of cultivars carrying the Sm1 midge resistance gene and 10% interspersed midge susceptible refuge, are now available to farmers. The refuge prevents this resistance to be overcome by the insect. To test the field performance of these varietal blends, relative to conventional midge-susceptible cultivars, four varietal blends were grown during four consecutive years, at eight locations in the provinces of Manitoba Saskatchewan and Alberta, in comparison to four conventional, midge-susceptible cultivars. Midge damage was higher in 2007 and 2010, than in 2008 and 2009. In general, the varietal blends, as a group, yielded more grain than the susceptible cultivars, especially when grown in environments with high midge pressure (5.5 - 35% seed damage). In environments with low midge pressure (0 – 2.6% seed damage), the varietal blend average yield advantage was smaller but still significant, indicating that some of the varietal blends had additional superior attributes, in addition to midge resistance. Significant differences in midge damage were observed within the resistant and the susceptible groups of the cultivars tested. Midge resistance did not protect wheat against loss of market grade

    The Liverpool Statement 2005: Priorities for the European Union/United States Spiral Computed Tomography Collaborative Group

    Get PDF
    The Liverpool Statement 2005 was developed at the Fourth International Lung Cancer Molecular Biomarkers Workshop in Liverpool (October 27-29, 2005) and focused on the priorities for the European Union/United States (EU-US) Spiral Computed Tomography (CT) Collaborative Group. The application of spiral CT technology for early lung cancer screening has gained enormous momentum in the past 5 years. The EU-US Spiral CT Collaboration was initiated in 2001 in Liverpool, and subsequent meetings throughout Europe have resulted in the development of collaborative protocols and minimal data sets that provide a mechanism for the different trial groups to work together, with the ultimate aim to pool results. Considerable progress has been made with major national screening trials in the U.S. and Europe, which include IELCAP, NLST, and NELSON. The major objective of this international collaboration is the planned cross-analysis of the individual studies after they are reported. The EU-US researchers have agreed to a number of long-term objectives and to explore strategic areas for harmonization of complementary investigations

    Non-invasive detection of the evolution of the charge states of a double dot system

    Full text link
    Coupled quantum dots are potential candidates for qubit systems in quantum computing. We use a non-invasive voltage probe to study the evolution of a coupled dot system from a situation where the dots are coupled to the leads to a situation where they are isolated from the leads. Our measurements allow us to identify the movement of electrons between the dots and we can also identify the presence of a charge trap in our system by detecting the movement of electrons between the dots and the charge trap. The data also reveals evidence of electrons moving between the dots via excited states of either the single dots or the double dot molecule.Comment: Accepted for publication in Phys. Rev. B. 4 pages, 4 figure

    Nonlinear Optical Properties Of GeSbS Chalcogenide Waveguides

    Get PDF
    We characterize the nonlinear optical properties of GeSbS chalcogenide glasses with fiber-based experiments. A waveguide nonlinear parameter of 7 W-1/m and nonlinear refractive index of 3.71 x 10-18 m2/W are estimated by self-phase modulation. A GeSbS waveguide could also generate a supercontinuum from 1280 to 2120 nm at the -30 dB level for maximum coupled power of 340 W, showing a 14-fold spectral broadening of the input spectrum explained by cascaded stimulated Raman scattering
    corecore