738 research outputs found

    A mantle melting profile across the Basin and Range, SW USA

    Get PDF
    This is the published version. Copyright 2002 American Geophysical Union. All Rights Reserved.The major and trace element composition of late Cenozoic basalts (0–10 Ma) across the Basin and Range province (B&R) preserve a clear signal of mantle melting depth variations. FeO, Fe8.0, and Tb/Yb increase, whereas Si8.0 and Al8.0 decrease, from west to east across the B&R along a profile at 36°–37°N. These variations are qualitatively consistent with shallower melting beneath the Western Great Basin (WGB) than in the central B&R. In order to quantify the depth range and percent of decompression melting, we invert primary Na2O and FeO contents of basalts using a melting model based on the partitioning of FeO and MgO in olivine and Na2O in clinopyroxene. An independent inversion, using the rare earth elements (REE), corroborates the melting depths obtained from the major element model and places most of the melting beneath the central B&R in the garnet-peridotite stability field. We find that the shape of the melting region across the B&R closely mimics the shape of the mantle lithosphere, as inferred from geological and geophysical observations. Melting across the study area occurs largely within the asthenosphere and generally stops at the base of the mantle lithosphere. In the WGB, melting paths are shallow, from 75 to 50 km, and in some cases extend almost to the base of the crust. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned (or absent) mantle lithosphere. Shallow melting is consistent with geobarometry and isotopic compositions of local mantle xenoliths. Lithospheric thinning was caused by thermal erosion during Mesozoic subduction and/or simple shear or foundering during Cenozoic extension. In contrast, melting beneath the central B&R occurs beneath thick mantle lithosphere and requires mantle potential temperatures 200°C hotter than normal (melting paths from 140 to 100 km). The excess temperature beneath the central B&R is consistent with active upwelling of hot mantle in this region

    Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small‐ and Large‐Scale Chemical Variability of the Lithospheric Mantle

    Get PDF
    This is the publisher's version, also available electronically from http://www.jstor.org/stable/info/10.1086/314355.Low‐silica basanite, basanite, and alkali basalt lava flows and cinder cones make up the late Quaternary Hurricane volcanic field (HVF) in the Colorado Plateau/Basin and Range transition zone of southwestern Utah. Strombolian‐ and Hawaiian‐style eruptions produced thin (10 m) a'a lava flows and 10 cinder and scoria cones that group geographically into five clusters. The five clusters can be further divided into four isotopic magma types that vary in 87Sr/86Sr from 0.7035 to 0.7049, εNd from 1.6 to −7.5, and 206Pb/204Pb from 17.4 to 18.7. Except for the Radio Towers and Volcano Mountain cone clusters, each volcano had a different parent magma and evolved by fractional crystallization of different amounts and proportions of olivine and clinopyroxene. Parent magmas of each isotope group formed by 0.5%–7% partial melting of lithospheric mantle composed of fertile lherzolite varying in garnet content from 1 to 4 wt %. New 40Ar/39Ar dates indicate that the HVF formed over a period of at least 100 ka during the late Quaternary. Along a transect from the Basin and Range to the Colorado Plateau, the source for Pliocene–late Quaternary alkali basalt magmas changes from asthenosphere in the Basin and Range to lithospheric mantle on the Colorado Plateau. The melting of a heterogeneous lithospheric mantle is the most viable mechanism for producing the observed chemical variability in the transition zone–Colorado Plateau part of the transect. Furthermore, chemical differences across the transect may reflect a major lithospheric boundary originally defined on the basis of Nd and Pb isotopes that is older and perhaps more fundamental than the present structural and physiographic boundary between the Basin and Range and Colorado Plateau

    Evolution of a mafic volcanic field in the central Great Basin, south central Nevada

    Get PDF
    This is the published version. Copyright 2012 American Geophysical Union. All Rights Reserved.Evolution of a mafic volcanic field is investigated through a study of Pliocene age rocks in the Reveille Range in south central Nevada. Pliocene activity began with the eruption of relatively abundant hawaiite (episode 1, 5–6 Ma), which was followed by trachytic volcanism (4.3 Ma) and by a second episode of lower-volume hawaiite and basanite (episode 2, 3.0–4.7 Ma). Incompatible elements indicate an asthenospheric source. Isotopically, episode 2 basalts cluster around 87Sr/86Sr = 0.7035 and εNd = +4.2, but episode 1 samples vary to high 87Si/86Sr (up to 0.7060) over a narrow range of εNd (+0.8 to +4.5). Trachytic rocks (MgO ∼ 0.5%) are isotopically akin to the episode 1 basalts. Geochemical variation requires the addition of a crustal component (high 87Sr/86Sr, Sr/Nd, Pb/La, low εNd) to the episode 1 hawaiites and trachytic samples, probably by assimilation of carbonate-rich sedimentary wall rock. The volcanic field developed in at least two eruptive cycles of approximately equal duration. Basanites (deeper and lower percentage melts) appear only in the younger episode. Eruptive episodes were apparently linked to separate melting events in the mantle. Through time, basalts were produced in diminishing volumes by lower percentage melting, magma generation and storage was at greater depths, and magma ascent was at higher velocities. Spatially, the melting anomalies were large in the Pliocene but progressively diminished in size so that by Pleistocene time, volcanism was restricted to a small area near the northern end of the initial outbreak

    Smell-related quality of life changes after total laryngectomy : a multi-centre study

    Get PDF
    Purpose: A total laryngectomy creates an alternate airway for gas exchange that bypasses the upper aerodigestive tract. The subsequent reduction in nasal airflow, and therefore, reduction in deposition of particles to the olfactory neuroepithelium leads to hyposmia or anosmia. The aim of this study was to assess the quality of life impairment conferred by anosmia following laryngectomy and identify any specific patient-related risk factors that are associated with poorer outcomes. Methods: Consecutive patients with a total laryngectomy presenting for review at three tertiary head and neck services (in Australia, the United Kingdom and India) over a 12-month period were recruited. Patient demographic and clinical data were collected, and each subject completed the validated assessment of self-reported olfactory functioning and olfaction-related quality of life questionnaire (ASOF). Dichotomous comparisons were performed using the student's unpaired t-test for continuous variables (SRP), a chi-squared test for categorical variables, and a Kendall's tau-b for ordinal variables (SOC) to assess for a correlation with poorer questionnaire scores. Results: A total of 66 laryngectomees (13.4% female; age 65.7 ± 8.6 years) were included in the study. The mean SRP score of the cohort was found to be 15.6 ± 7.4, while the mean ORQ score was noted to be 16.4 ± 8.1. No other specific risk factors associated with poorer quality of life were identified. Conclusion: A significant quality of life detriment from hyposmia is conferred following laryngectomy. Further research to assess treatment options and the patient population that would best benefit from these interventions is required

    Quantum phase transitions in the Bose-Fermi Kondo model

    Full text link
    We study quantum phase transitions in the Bose-Fermi Kondo problem, where a local spin is coupled to independent bosonic and fermionic degrees of freedom. Applying a second order expansion in the anomalous dimension of the Bose field we analyze the various non-trivial fixed points of this model. We show that anisotropy in the couplings is relevant at the SU(2) invariant non Fermi liquid fixed points studied earlier and thus the quantum phase transition is usually governed by XY or Ising-type fixed points. We furthermore derive an exact result that relates the anomalous exponent of the Bose field to that of the susceptibility at any finite coupling fixed point. Implications on the dynamical mean field approach to locally quantum critical phase transitions are also discussed.Comment: 13 pages, 9 figures, some references added/correcte

    Interplay Between Time-Temperature-Transformation and the Liquid-Liquid Phase Transition in Water

    Full text link
    We study the TIP5P water model proposed by Mahoney and Jorgensen, which is closer to real water than previously-proposed classical pairwise additive potentials. We simulate the model in a wide range of deeply supercooled states and find (i) the existence of a non-monotonic ``nose-shaped'' temperature of maximum density line and a non-reentrant spinodal, (ii) the presence of a low temperature phase transition, (iii) the free evolution of bulk water to ice, and (iv) the time-temperature-transformation curves at different densities.Comment: RevTeX4, 4 pages, 4 eps figure

    Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are genetically highly variable and have diversified into multiple phylogenetic clades over the past decade. Antigenic drift is a well-studied phenomenon for seasonal human influenza viruses, but much less is known about the antigenic evolution of HPAI H5N1 viruses that circulate in poultry. In this study, we focused on HPAI H5N1 viruses that are enzootic to Indonesia. We selected representative viruses from genetically distinct lineages that are currently circulating and determined their antigenic properties by hemagglutination inhibition assays. At least six antigenic variants have circulated between 2003, when H5N1 clade 2.1 viruses were first detected in Indonesia, and 2011. During this period, multiple antigenic variants cocirculated in the same geographic regions. Mutant viruses were constructed by site-directed mutagenesis to represent each of the circulating antigenic variants, revealing that antigenic differences between clade 2.1 viruses were due to only one or very few amino acid substitutions immediately adjacent to the receptor binding site. Antigenic variants of H5N1 virus evaded recognition by both ferret and chicken antibodies. The molecular basis for antigenic change in clade 2.1 viruses closely resembled that of seasonal human influenza viruses, indicating that the hemagglutinin of influenza viruses from different hosts and subtypes may be similarly restricted to evade antibody recognition

    Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    Get PDF
    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis

    Thermodynamic and structural aspects of the potential energy surface of simulated water

    Full text link
    Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition have been proposed over many years. The potential energy surface of model liquids has been increasingly studied since it provides a connection between the configurational component of the partition function on one hand, and the system dynamics on the other. This connection is most obvious at low temperatures, where the motion of the system can be partitioned into vibrations within a basin of attraction and infrequent inter-basin transitions. In this work, we present a description of the potential energy surface properties of supercooled liquid water. The dynamics of this model has been studied in great details in the last years. Specifically, we locate the minima sampled by the liquid by ``quenches'' from equilibrium configurations generated via molecular dynamics simulations. We calculate the temperature and density dependence of the basin energy, degeneracy, and shape. The temperature dependence of the energy of the minima is qualitatively similar to simple liquids, but has anomalous density dependence. The unusual density dependence is also reflected in the configurational entropy, the thermodynamic measure of degeneracy. Finally, we study the structure of simulated water at the minima, which provides insight on the progressive tetrahedral ordering of the liquid on cooling
    corecore