3,972 research outputs found

    Confirming what we know: Understanding questionable research practices in intro physics labs

    Full text link
    Many institutions are changing the focus of their introductory physics labs from verifying physics content towards teaching students about the skills and nature of science. As instruction shifts, so too will the ways students approach and behave in the labs. In this study, we evaluated students' lab notes from an early activity in an experimentation-focused lab course. We found that about 30% of student groups (out of 107 groups at three institutions) recorded questionable research practices in their lab notes, such as subjective interpretations of results or manipulating equipment and data. The large majority of these practices were associated with confirmatory goals, which we suspect stem from students' prior exposure to verification labs. We propose ways for experimentation-focused labs to better engage students in the responsible conduct of research and authentic scientific practice.Comment: 4 pages, 4 figure

    The Three-Dimensional Structure of the Cystic Fibrosis Locus: A Dissertation

    Get PDF
    The three dimensional structure of the human genome is known to play a critical role in gene function and expression. I used chromosome conformation capture (3C) and 3C-carbon copy (5C) techniques to investigate the three-dimensional structure of the cystic fibrosis transmembrane conductance regulator (CFTR) locus. This is an important disease gene that, when mutated, causes cystic fibrosis. 3C experiments identified four distinct looping elements that contact the CFTR gene promoter only in CFTR-expressing cells. Using 5C, I expanded the region of study to a 2.8 Mb region surrounding the CFTR gene. The 5C study shows 7 clear topologically associating domains (TADs) present at the locus, identical in all five cell lines tested, regardless of gene expression status. CFTR and all its known regulatory elements are contained within one TAD, suggesting TADs play a role in constraining promoters to a local search space. The four looping elements identified in the 3C experiment and confirmed in the 5C experiment were then tested for enhancer activity using a luciferase assay, which showed that elements III and IV could act as enhancers. These elements were tested against a library of human transcription factors in a yeast one-hybrid assay to identify potential binding proteins. Element III gave two strong candidates, TCF4 and LEF1. A literature search supported these transcription factors as playing a role in CFTR gene expression. Overall, this work represents a model locus that can be used to test important questions regarding the role of three dimensional looping on gene expression

    Who does what now? How physics lab instruction impacts student behaviors

    Full text link
    While laboratory instruction is a cornerstone of physics education, the impact of student behaviours in labs on retention, persistence in the field, and the formation of students' physics identity remains an open question. In this study, we performed in-lab observations of student actions over two semesters in two pedagogically different sections of the same introductory physics course. We used a cluster analysis to identify different categories of student behaviour and analyzed how they correlate with lab structure and gender. We find that, in lab structures which fostered collaborative group work and promoted decision making, there was a task division along gender lines with respect to laptop and equipment usage (and found no such divide among students in guided verification labs).Comment: 4 pages, 3 figures, 3 table

    Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy

    Get PDF
    There is an increasing demand for nondestructive in situ techniques that measure chemical content, total thickness, and interface locations for multilayer polymer films, and scanning angle (SA) Raman spectroscopy in combination with appropriate data models can provide this information. A SA Raman spectroscopy method was developed to measure the chemical composition of multilayer polymer waveguide films and to extract the location of buried interfaces between polymer layers with 7- to 80-nm axial spatial resolution. The SA Raman method acquires Raman spectra as the incident angle of light upon a prism-coupled thin film is scanned. Six multilayer films consisting of poly(methyl methacrylate)/polystyrene or poly(methyl methacrylate)/polystyrene/poly(methyl methacrylate) were prepared with total thicknesses ranging from 330 to 1,260 nm. The interface locations were varied by altering the individual layer thicknesses between 140 and 680 nm. The Raman amplitude ratio of the 1,605-cm−1 peak for polystyrene and 812-cm−1 peak for poly(methyl methacrylate) was used in calculations of the electric field intensity within the polymer layers to model the SA Raman data and extract the total thickness and interface locations. There is an average 8% and 7% difference in the measured thickness between the SA Raman and profilometry measurements for bilayer and trilayer films, respectively

    Private tuition in England

    Get PDF

    Individual and Group Performance on Insight Problems: The Effects of Experimentally Induced Fixation

    Get PDF
    Recent research has shown that the benefits associated with incubation periods during individual problem solving can be explained in terms of forgetting the material or of any strategy that serves to block progress toward success (e.g., Smith & Blankenship, 1991). While interacting groups reliably outperform individuals on both problem-solving and recall tasks, groups’ superior memory capacity may serve to hinder problem solving, especially when fixation has occurred. In the present study, individuals and three-person groups attempted to solve a set of 20 rebus puzzles on two different occasions. In the first session rebuses were accompanied by “clues,” that were designed to either help or hinder problem solving. Following a 15-minute filled incubation period, the rebuses were again presented without the clues. As expected, groups recalled more of the clues than did individual problem solvers. Additionally, individual problem-solvers’ performance was improved following the incubation period on the misleading clue items but not the good clue items. Following incubation, groups improved on both the helpful and misleading clue items. The possibility that incubation effects may vary with task type in group problem-solving contexts is discussed
    corecore