5 research outputs found

    Prophylaxis for COVID-19: a systematic review

    No full text
    Background: While the landscape of vaccine and treatment candidates against the novel coronavirus disease 2019 (COVID-19) has been reviewed systematically, prophylactic candidates remain unexplored. Objectives: To map pre- and postexposure prophylactic (PrEP and PEP) candidate for COVID-19. Data sources: PubMed/Medline, Embase, International Committee of Medical Journal Editors and International Clinical Trials Registry Platform clinical trial registries and medRxiv. Study eligibility criteria and participants: All studies in humans or animals and randomized controlled trials (RCTs) in humans reporting primary data on prophylactic candidates against COVID-19, excluding studies focused on key populations. Interventions: PrEP and PEP candidate for COVID-19. Methods: Systematic review and qualitative synthesis of COVID-19 PrEP and PEP studies and RCTs complemented by search of medRxiv and PubMed and Embase for studies reporting RCT outcomes since systematic review search completion. Results: We identified 13 studies (from 2119 database records) and 117 RCTs (from 5565 RCTs listed in the registries) that met the inclusion criteria. Non-RCT studies reported on cross-sectional studies using hydroxychloroquine (HCQ) in humans (n = 2) or reported on animal studies (n = 7), most of which used antibodies. All five completed RCTs focused on the use of HCQ as either PrEP or PEP, and these and the cross-sectional studies reported no prophylactic effect. The majority of ongoing RCTs evaluated HCQ or other existing candidates including non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, anti(retro)virals or use of vitamins and supplements. Conclusions: The key message from completed studies and RCTs seems to be that HCQ does not work. There is little evidence regarding other compounds, with all RCTs using candidates other than HCQ still ongoing. It remains to be seen if the portfolio of existing molecules being evaluated in RCTs will identify successful prophylaxis against COVID-19 or if there is a need for the development of new candidates.</p

    Network Analysis of Outpatients to Identify Predictive Symptoms and Combinations of Symptoms Associated With Positive/Negative SARS-CoV-2 Nasopharyngeal Swabs

    No full text
    Background: Limited data exist on early predictive clinical symptoms or combinations of symptoms that could be included in the case definition of coronavirus disease 2019 (COVID-19), particularly for mild-to-moderate disease in an outpatient setting. Methods: A cohort study of individuals presenting with clinical symptoms to one of the largest dedicated networks of COVID-19 test centers in Geneva, Switzerland, between March 2 and April 23, 2020. Individuals completed a symptom questionnaire, received a nurse-led check-up, and nasopharyngeal swabs were obtained. An analysis of clinical features predicting the positivity and negativity of the SARS-CoV-2 RT-PCR test was performed to determine the relationship between symptoms and their combinations. Results: Of 3,248 patients included (mean age, 42.2 years; 1,504 [46.3%] male), 713 (22%) had a positive RT-PCR; 1,351 (41.6%) consulted within 3 days of symptom onset. The strongest predictor of a positive SARS-CoV-2 RT-PCR was anosmia, particularly in early disease, followed by fever, myalgia, and cough. Symptoms predictive of a negative test were breathing difficulties, abdominal symptoms, thoracic pain and runny nose. Three distinct networks of symptoms were identified, but did not occur together: respiratory symptoms; systemic symptoms related to fever; and other systemic symptoms related to anosmia. Conclusions: Symptoms and networks of symptoms associated with a positive/negative SARS-CoV-2 RT-PCR are emerging and may help to guide targeted testing. Identification of early COVID-19-related symptoms alone or in combination can contribute to establish a clinical case definition and provide a basis for clinicians and public health authorities to distinguish it from other respiratory viruses early in the course of the disease, particularly in the outpatient setting

    Post-exposure Lopinavir-Ritonavir Prophylaxis versus Surveillance for Individuals Exposed to SARS-CoV-2: The COPEP Pragmatic Open-Label, Cluster Randomized Trial

    Get PDF
    Background: Since the beginning of the COVID-19 pandemic, no direct antiviral treatment is effective as post-exposure prophylaxis (PEP). Lopinavir/ritonavir (LPV/r) was repurposed as a potential PEP agent against COVID-19. Methods: We conducted a pragmatic open-label, parallel, cluster-randomised superiority trial in four sites in Switzerland and Brazil between March 2020 to March 2021. Clusters were randomised to receive LPV/r PEP (400/100 mg) twice daily for 5 days or no PEP (surveillance). Exposure to SARS-CoV-2 was defined as a close contact of &gt;15 minutes in &lt;2 metres distance or having shared a closed space for ≥2 hours with a person with confirmed SARS-CoV-2 infection. The primary outcome is the occurrence of COVID-19 defined by a SARS-CoV-2 infection (positive oropharyngeal SARS-CoV-2 PCR and/or a seroconversion) and ≥1 compatible symptom within 21 days post-enrolment. ClinicalTrials.gov (Identifier: NCT04364022); Swiss National Clinical Trial Portal: SNCTP 000003732. Findings: Of 318 participants, 157 (49.4%) were women; median age was 39 (interquartile range, 28-50) years. A total of 209 (179 clusters) participants were randomised to LPV/r PEP and 109 (95 clusters) to surveillance. Baseline characteristics were similar, with the exception of baseline SARS-CoV-2 PCR positivity, which was 3-fold more frequent in the LPV/r arm (34/209 [16.3%] vs 6/109 [5.5%], respectively). During 21-day follow-up, 48/318 (15.1%) participants developed COVID-19: 35/209 (16.7%) in the LPV/r group and 13/109 (11.9%) in the surveillance group (unadjusted hazard ratio 1.44; 95% CI, 0.76-2.73). In the primary endpoint analysis, which was adjuted for baseline imbalance, the hazard ratio for developing COVID-19 in the LPV/r group vs surveillance was 0.60 (95% CI, 0.29-1.26; p =0.18). Interpretation: The role of LPV/r as PEP for COVID-19 remains unanswered. Although LPV/r over 5 days did not significantly reduce the incidence of COVID-19 in exposed individuals, we observed a change in the directionality of the effect in favour of LPV/r after adjusting for baseline imbalance. LPV/r for this indication merits further testing against SARS-CoV-2 in clinical trials. Funding: Swiss National Science Foundation (project no.: 33IC30_166819) and the Private Foundation of Geneva University Hospitals (Edmond Rothschild (Suisse) SA, Union Bancaire Privée and the Fondation pour la recherche et le traitement médical).</p
    corecore