18,101 research outputs found

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions

    Full text link
    We consider the application of the DRA method to the case of several master integrals in a given sector. We establish a connection between the homogeneous part of dimensional recurrence and maximal unitarity cuts of the corresponding integrals: a maximally cut master integral appears to be a solution of the homogeneous part of the dimensional recurrence relation. This observation allows us to make a necessary step of the DRA method, the construction of the general solution of the homogeneous equation, which, in this case, is a coupled system of difference equations.Comment: 17 pages, 2 figure

    Four-dimensional integration by parts with differential renormalization as a method of evaluation of Feynman diagrams

    Get PDF
    It is shown how strictly four-dimensional integration by parts combined with differential renormalization and its infrared analogue can be applied for calculation of Feynman diagrams.Comment: 6 pages, late

    Conformal Curves in Potts Model: Numerical Calculation

    Full text link
    We calculated numerically the fractal dimension of the boundaries of the Fortuin-Kasteleyn clusters of the qq-state Potts model for integer and non-integer values of qq on the square lattice. In addition we calculated with high accuracy the fractal dimension of the boundary points of the same clusters on the square domain. Our calculation confirms that this curves can be described by SLEκ_{\kappa}.Comment: 11 Pages, 4 figure

    Planar box diagram for the (N_F = 1) 2-loop QED virtual corrections to Bhabha scattering

    Full text link
    In this paper we present the master integrals necessary for the analytic calculation of the box diagrams with one electron loop (N_{F}=1) entering in the 2-loop (\alpha^3) QED virtual corrections to the Bhabha scattering amplitude of the electron. We consider on-shell electrons and positrons of finite mass m, arbitrary squared c.m. energy s, and momentum transfer t; both UV and soft IR divergences are regulated within the continuous D-dimensional regularization scheme. After a brief overview of the method employed in the calculation, we give the results, for s and t in the Euclidean region, in terms of 1- and 2-dimensional harmonic polylogarithms, of maximum weight 3. The corresponding results in the physical region can be recovered by analytical continuation. For completeness, we also provide the analytic expression of the 1-loop scalar box diagram including the first order in (D-4).Comment: Misprints in Eqs. (36), (38), (39), and (B.9) have been corrected. The results are now available at http://pheno.physik.uni-freiburg.de/~bhabha, as FORM input file

    Exactly solvable model of the 2D electrical double layer

    Get PDF
    We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike ±\pm unit charges in the stability-against-collapse regime of reduced inverse temperatures 0β<20\le \beta<2. If there is a potential difference between the bulk interior of the electrolyte and the grounded interface, the electrolyte region close to the interface (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the non-perturbative result for the asymptotic density profile at a strictly nonzero β\beta that the Debye-H\"uckel β0\beta\to 0 limit is a delicate issue.Comment: 14 page

    A Comparative Numerical Study on GEM, MHSP and MSGC

    Full text link
    In this work, we have tried to develop a detailed understanding of the physical processes occurring in those variants of Micro Pattern Gas Detectors (MPGDs) that share micro hole and micro strip geometry, like GEM, MHSP and MSGC etc. Some of the important and fundamental characteristics of these detectors such as gain, transparency, efficiency and their operational dependence on different device parameters have been estimated following detailed numerical simulation of the detector dynamics. We have used a relatively new simulation framework developed especially for the MPGDs that combines packages such as GARFIELD, neBEM, MAGBOLTZ and HEED. The results compare closely with the available experimental data. This suggests the efficacy of the framework to model the intricacies of these micro-structured detectors in addition to providing insight into their inherent complex dynamical processes
    corecore