14,761 research outputs found

    On the Resolution of Singularities of Multiple Mellin-Barnes Integrals

    Full text link
    One of the two existing strategies of resolving singularities of multifold Mellin-Barnes integrals in the dimensional regularization parameter, or a parameter of the analytic regularization, is formulated in a modified form. The corresponding algorithm is implemented as a Mathematica code MBresolve.mComment: LaTeX, 10 page

    Asymptotic Bound-state Model for Feshbach Resonances

    Get PDF
    We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.Comment: 13 pages, 8 figure

    Four-dimensional integration by parts with differential renormalization as a method of evaluation of Feynman diagrams

    Get PDF
    It is shown how strictly four-dimensional integration by parts combined with differential renormalization and its infrared analogue can be applied for calculation of Feynman diagrams.Comment: 6 pages, late

    Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space

    Full text link
    The problem of the invariant classification of the orthogonal coordinate webs defined in Euclidean space is solved within the framework of Felix Klein's Erlangen Program. The results are applied to the problem of integrability of the Calogero-Moser model

    Using baseline-dependent window functions for data compression and field-of-interest shaping in radio interferometry

    Full text link
    In radio interferometry, observed visibilities are intrinsically sampled at some interval in time and frequency. Modern interferometers are capable of producing data at very high time and frequency resolution; practical limits on storage and computation costs require that some form of data compression be imposed. The traditional form of compression is a simple averaging of the visibilities over coarser time and frequency bins. This has an undesired side effect: the resulting averaged visibilities "decorrelate", and do so differently depending on the baseline length and averaging interval. This translates into a non-trivial signature in the image domain known as "smearing", which manifests itself as an attenuation in amplitude towards off-centre sources. With the increasing fields of view and/or longer baselines employed in modern and future instruments, the trade-off between data rate and smearing becomes increasingly unfavourable. In this work we investigate alternative approaches to low-loss data compression. We show that averaging of the visibility data can be treated as a form of convolution by a boxcar-like window function, and that by employing alternative baseline-dependent window functions a more optimal interferometer smearing response may be induced. In particular, we show improved amplitude response over a chosen field of interest, and better attenuation of sources outside the field of interest. The main cost of this technique is a reduction in nominal sensitivity; we investigate the smearing vs. sensitivity trade-off, and show that in certain regimes a favourable compromise can be achieved. We show the application of this technique to simulated data from the Karl G. Jansky Very Large Array (VLA) and the European Very-long-baseline interferometry Network (EVN)

    Magic identities for conformal four-point integrals

    Get PDF
    We propose an iterative procedure for constructing classes of off-shell four-point conformal integrals which are identical. The proof of the identity is based on the conformal properties of a subintegral common for the whole class. The simplest example are the so-called `triple scalar box' and `tennis court' integrals. In this case we also give an independent proof using the method of Mellin--Barnes representation which can be applied in a similar way for general off-shell Feynman integrals.Comment: 13 pages, 12 figures. New proof included with neater discussion of contact terms. Typo correcte

    Computing the Loewner driving process of random curves in the half plane

    Full text link
    We simulate several models of random curves in the half plane and numerically compute their stochastic driving process (as given by the Loewner equation). Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion. We find that just testing the normality of the process at a fixed time is not effective at determining if the process is Brownian motion. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N^1.35) rather than the usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph to conclusion section; improved figures cosmeticall

    Numerical evaluation of multi-loop integrals by sector decomposition

    Full text link
    In a recent paper we have presented an automated subtraction method for divergent multi-loop/leg integrals in dimensional regularisation which allows for their numerical evaluation, and applied it to diagrams with massless internal lines. Here we show how to extend this algorithm to Feynman diagrams with massive propagators and arbitrary propagator powers. As applications, we present numerical results for the master 2-loop 4-point topologies with massive internal lines occurring in Bhabha scattering at two loops, and for the master integrals of planar and non-planar massless double box graphs with two off-shell legs. We also evaluate numerically some two-point functions up to 5 loops relevant for beta-function calculations, and a 3-loop 4-point function, the massless on-shell planar triple box. Whereas the 4-point functions are evaluated in non-physical kinematic regions, the results for the propagator functions are valid for arbitrary kinematics.Comment: 15 pages latex, 11 eps figures include

    Form factors of descendant operators: Free field construction and reflection relations

    Full text link
    The free field representation for form factors in the sinh-Gordon model and the sine-Gordon model in the breather sector is modified to describe the form factors of descendant operators, which are obtained from the exponential ones, \e^{\i\alpha\phi}, by means of the action of the Heisenberg algebra associated to the field ϕ(x)\phi(x). As a check of the validity of the construction we count the numbers of operators defined by the form factors at each level in each chiral sector. Another check is related to the so called reflection relations, which identify in the breather sector the descendants of the exponential fields \e^{\i\alpha\phi} and \e^{\i(2\alpha_0-\alpha)\phi} for generic values of α\alpha. We prove the operators defined by the obtained families of form factors to satisfy such reflection relations. A generalization of the construction for form factors to the kink sector is also proposed.Comment: 29 pages; v2: minor corrections, some references added; v3: minor corrections; v4,v5: misprints corrected; v6: minor mistake correcte
    • …
    corecore