947 research outputs found
Gravitino Dark Matter in Tree Level Gauge Mediation with and without R-parity
We investigate the cosmological aspects of Tree Level Gauge Mediation, a
recently proposed mechanism in which the breaking of supersymmetry is
communicated to the soft scalar masses by extra gauge interactions at the tree
level. Embedding the mechanism in a Grand Unified Theory and requiring the
observability of sfermion masses at the Large Hadron Collider, it follows that
the Lightest Supersymmetric Particle is a gravitino with a mass of the order of
10 GeV. The analysis in the presence of R-parity shows that a typical Tree
Level Gauge Mediation spectrum leads to an overabundance of the Dark Matter
relic density and a tension with the constraints from Big Bang Nucleosynthesis.
This suggests to relax the exact conservation of the R-parity. The underlying
SO(10) Grand Unified Theory together with the bounds from proton decay provide
a rationale for considering only bilinear R-parity violating operators. We
finally analyze the cosmological implications of this setup by identifying the
phenomenologically viable regions of the parameter space.Comment: 28 pages, 5 figures. References added. To appear in JHE
Relations among neutrino observables in the light of a large theta_13 angle
The recent T2K and MINOS indications for a "large" theta_13 neutrino mixing
angle can be accommodated in principle by an infinite number of Yukawa flavour
structures in the seesaw model. Without considering any explicit flavour
symmetry, there is an instructive exercise one can do: to determine the
simplest flavour structures which can account for the data with a minimum
number of parameters, simply assuming these parameters to be uncorrelated. This
approach points towards a limited number of simple structures which show the
minimum complexity a neutrino mass model must generally involve to account for
the data. These basic structures essentially lead to only 4 relations between
the neutrino observables. We emphasize that 2 of these relations, |sin
theta_13|=(tan theta_23/cos delta)*(1-tan theta_12)/(1+tan theta_12) and |sin
theta_13| = sin theta_12 R^1/4, with R= Delta m^2_21/Delta m^2_32, have several
distinctive properties. First, they hold not only with a minimum number of
parameters, but also for complete classes of more general models. Second, any
value of theta_13 within the T2K and MINOS ranges can be obtained from these
relations by taking into account small perturbations. Third, they turn out to
be the pivot relations of models with approximate conservation of lepton
number, which allow the seesaw interactions to induce observable flavour
violating processes, such as mu -> e gamma and tau -> mu gamma. Finally, in
specific cases of this kind, these structures have the rather unique property
to allow a full reconstruction of the seesaw Lagrangian from low energy data.Comment: 13 pages, 3 figure
Froggatt-Nielsen models from E8 in F-theory GUTs
This paper studies F-theory SU(5) GUT models where the three generations of
the standard model come from three different curves. All the matter is taken to
come from curves intersecting at a point of enhanced E8 gauge symmetry. Giving
a vev to some of the GUT singlets naturally implements a Froggatt-Nielsen
approach to flavour structure. A scan is performed over all possible models and
the results are filtered using phenomenological constraints. We find a unique
model that fits observations of quark and lepton masses and mixing well. This
model suffers from two drawbacks: R-parity must be imposed by hand and there is
a doublet-triplet splitting problem.Comment: 42 pages; v2:journal version; v3:corrected typo in neutrino masse
On hypercharge flux and exotics in F-theory GUTs
We study SU(5) Grand Unified Theories within a local framework in F-theory
with multiple extra U(1) symmetries arising from a small monodromy group. The
use of hypercharge flux for doublet-triplet splitting implies massless exotics
in the spectrum that are protected from obtaining a mass by the U(1)
symmetries. We find that lifting the exotics by giving vacuum expectation
values to some GUT singlets spontaneously breaks all the U(1) symmetries which
implies that proton decay operators are induced. If we impose an additional
R-parity symmetry by hand we find all the exotics can be lifted while proton
decay operators are still forbidden. These models can retain the gauge coupling
unification accuracy of the MSSM at 1-loop. For models where the generations
are distributed across multiple curves we also present a motivation for the
quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen
approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models
without a global E8 structure, added ref, journal versio
R-parity violation in SU(5)
We show that judiciously chosen R-parity violating terms in the minimal
renormalizable supersymmetric SU(5) are able to correct all the
phenomenologically wrong mass relations between down quarks and charged
leptons. The model can accommodate neutrino masses as well. One of the most
striking consequences is a large mixing between the electron and the Higgsino.
We show that this can still be in accord with data in some regions of the
parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE
MSSM in view of PAMELA and Fermi-LAT
We take the MSSM as a complete theory of low energy phenomena, including
neutrino masses and mixings. This immediately implies that the gravitino is the
only possible dark matter candidate. We study the implications of the
astrophysical experiments such as PAMELA and Fermi-LAT, on this scenario. The
theory can account for both the realistic neutrino masses and mixings, and the
PAMELA data as long as the slepton masses lie in the TeV range. The
squarks can be either light or heavy, depending on their contribution to
radiative neutrino masses. On the other hand, the Fermi-LAT data imply heavy
superpartners, all out of LHC reach, simply on the grounds of the energy scale
involved, for the gravitino must weigh more than 2 TeV. The perturbativity of
the theory also implies an upper bound on its mass, approximately TeV.Comment: Published version, figures update
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Degenerate and Other Neutrino Mass Scenarios and Dark Matter
I discuss in this talk mainly three topics related with dark matter motivated neutrino mass spectrum and a generic issue of mass pattern, the normal versus the inverted mass hierarchies. In the first part, by describing failure of a nontrivial potential counter example, I argue that the standard 3 mixing scheme with the solar and the atmospheric 's is robust. In the second part, I discuss the almost degenerate neutrino (ADN) scenario as the unique possibility of accommodating dark matter mass neutrinos into the 3 scheme. I review a cosmological bound and then reanalyze the constraints imposed on the ADN scenario with the new data of double beta decay experiment. In the last part, I discuss the 3 flavor transformation in supernova (SN) and point out the possibility that neutrinos from SN may distinguish the normal versus inverted hierarchies of neutrino masses. By analyzing the neutrino data from SN1987A, I argue that the inverted mass hierarchy is disfavored by the data
- …