12,083 research outputs found

    Adiabaticity and spectral splits in collective neutrino transformations

    Full text link
    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to "spectral splits" where an energy E_split divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being "washed out". The sharpness of the split appears to be represented by a surprisingly universal function.Comment: 20 pages, revtex, 13 figure

    Optically induced spin polarization of an electric current through a quantum dot

    Full text link
    We examine electron transport through semiconductor quantum dot subject to a continuous circularly polarized optical irradiation resonant to the electron - heavy hole transition. Electrons having certain spin polarization experience Rabi oscillation and their energy levels are shifted by the Rabi frequency. Correspondingly, the equilibrium chemical potential of the leads and the lead-to-lead bias voltage can be adjusted so only electrons with spin-up polarization or only electrons with spin-down polarization contribute to the current. The temperature dependence of the spin polarization of the current is also discussed.Comment: Several misprints are correcte

    Atmospheric neutrinos: LMA oscillations, Ue3 induced interference and CP-violation

    Get PDF
    We consider oscillations of the low energy (sub-GeV sample) atmospheric neutrinos in the three neutrino context. We present the semi-analytic study of the neutrino evolution and calculate characteristics of the e-like events (total number, energy spectra and zenith angle distributions) in the presence of oscillations. At low energies there are three different contributions to the number of events: the LMA contribution (from electron-neutrino oscillations driven by the solar oscillation parameters), the Ue3-contribution proportional to s13**2, and the Ue3 - induced interference of the two amplitudes driven by the solar oscillation parameters. The interference term is sensitive to the CP-violation phase. We describe in details properties of these contributions. We find that the LMA, the interference and Ue3 contributions can reach 5 - 6%, 2 - 3% and 1 - 2 % correspondingly. An existence of the significant (> 3 - 5 %) excess of the e-like events in the sub-GeV sample and the absence of the excess in the multi-GeV range testifies for deviation of the 2-3 mixing from maximum. We consider a possibility to measure the deviation as well as the CP- violation phase in future atmospheric neutrino studies.Comment: 30 pages, RevTeX4.0, 11 figures; improved figure

    On the Clebsch-Gordan coefficients for the two-parameter quantum algebra SU(2)p,qSU(2)_{p,q}

    Get PDF
    We show that the Clebsch - Gordan coefficients for the SU(2)p,qSU(2)_{p,q} - algebra depend on a single parameter Q = pq\sqrt{pq} ,contrary to the explicit calculation of Smirnov and Wehrhahn [J.Phys.A 25 (1992),5563].Comment: 5 page

    Modelling chemical reactions using semiconductor quantum dots

    Full text link
    We propose using semiconductor quantum dots for a simulation of chemical reactions as electrons are redistributed among such artificial atoms. We show that it is possible to achieve various reaction regimes and obtain different reaction products by varying the speed of voltage changes applied to the gates forming quantum dots. Considering the simplest possible reaction, H2+H→H+H2H_2+H\to H+H_2, we show how the necessary initial state can be obtained and what voltage pulses should be applied to achieve a desirable final product. Our calculations have been performed using the Pechukas gas approach, which can be extended for more complicated reactions
    • …
    corecore