13,310 research outputs found

    On the Resolution of Singularities of Multiple Mellin-Barnes Integrals

    Full text link
    One of the two existing strategies of resolving singularities of multifold Mellin-Barnes integrals in the dimensional regularization parameter, or a parameter of the analytic regularization, is formulated in a modified form. The corresponding algorithm is implemented as a Mathematica code MBresolve.mComment: LaTeX, 10 page

    Form-factors of the sausage model obtained with bootstrap fusion from sine-Gordon theory

    Get PDF
    We continue the investigation of massive integrable models by means of the bootstrap fusion procedure, started in our previous work on O(3) nonlinear sigma model. Using the analogy with SU(2) Thirring model and the O(3) nonlinear sigma model we prove a similar relation between sine-Gordon theory and a one-parameter deformation of the O(3) sigma model, the sausage model. This allows us to write down a free field representation for the Zamolodchikov-Faddeev algebra of the sausage model and to construct an integral representation for the generating functions of form-factors in this theory. We also clear up the origin of the singularities in the bootstrap construction and the reason for the problem with the kinematical poles.Comment: 16 pages, revtex; references added, some typos corrected. Accepted for publication in Physical Review

    Iteration of Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory at Three Loops and Beyond

    Get PDF
    We compute the leading-color (planar) three-loop four-point amplitude of N=4 supersymmetric Yang-Mills theory in 4 - 2 epsilon dimensions, as a Laurent expansion about epsilon = 0 including the finite terms. The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence for a previous conjecture that higher-loop planar N = 4 amplitudes have an iterative structure. The infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an exponentiated ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1/epsilon^2 pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in N = 4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop quark and gluon form factors in QCD.Comment: 54 pages, 7 figures. v2: Added references, a few additional words about large spin limit of anomalous dimensions. v3: Expanded Sect. IV.A on multiloop ansatz; remark that form-factor prediction is now confirmed by other work; minor typos correcte

    New Relations for Gauge-Theory Amplitudes

    Full text link
    We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between color-ordered partial amplitudes. We discuss applications to multi-loop calculations via the unitarity method. In particular, we illustrate the relations between different contributions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree amplitudes diagram by diagram, offering new insight into the structure of the KLT relations between gauge and gravity tree amplitudes. This can be used to obtain novel relations similar to the KLT ones. We expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.Comment: 40 pages, 7 figures, RevTex, v2 minor correction

    An Integrand Reconstruction Method for Three-Loop Amplitudes

    Full text link
    We consider the maximal cut of a three-loop four point function with massless kinematics. By applying Groebner bases and primary decomposition we develop a method which extracts all ten propagator master integral coefficients for an arbitrary triple-box configuration via generalized unitarity cuts. As an example we present analytic results for the three loop triple-box contribution to gluon-gluon scattering in Yang-Mills with adjoint fermions and scalars in terms of three master integrals.Comment: 15 pages, 1 figur
    • …
    corecore