2,426 research outputs found

    First direct identification of the barlens vertical structure in galaxy models

    Full text link
    Applying spectral dynamics methods to one typical NN-body model with a barlens, we dissect the modelled bar into separate components supported by completely different types of orbits. We identify at least four components: a narrow elongated bar, a boxy bar, and two components contributing to the barlens. We analyse the vertical structure of all components that make up the thick part of the bar, which has a boxy/peanut shape (B/P bulge). We show that the `peanut' shape is mainly due to the orbits that assemble the boxy part of the face-on bar. We associate the X-shape with the narrow and elongated bar. The wider part of the barlens with square-like isophotes contributes to the boxy shape of the B/P bulge when we observe the galaxy edge-on. However, the part of the barlens with rounded isophotes in the face-on view is a rather flat structure in the vertical direction without any significant off-centre protrusions. Thus, for the first time, we demonstrate that the rounded face-on barlens cannot be entirely associated with the B/P bulge.Comment: 5 pages, 5 figures, accepted to Astronomy and Astrophysics on March 26, 202

    B/PS bulges and barlenses from a kinematic viewpoint. I

    Full text link
    A significant part of barred disc galaxies exhibits boxy/peanut-shaped structures (B/PS bulges) at high inclinations. Another structure also associated with the bar is a barlens, often observed in galaxies in a position close to face-on. At this viewing angle, special kinematic tests are required to detect a 3D extension of the bars in the vertical direction (B/PS bulges). We use four pure NN-body models of galaxies with B/PS bulges, which have different bar morphology from bars with barlenses to the so-called face-on peanut bars. We analyse the kinematics of our models to establish how the structural features of B/PS bulges manifest themselves in the kinematics for galaxies at intermediate inclinations and whether these features are related to the barlenses. We apply the dissection of the bar into different orbital groups to determine which of them are responsible for the features of the LOSVD (line-of-sight velocity distribution), i.e., for the deep minima of the h4h_4 parameter along the major axis of the bar. As a result, we claim that for our models at the face-on position, the kinematic signatures of a `peanut' indeed track the vertical density distribution features. We conclude that orbits responsible for such kinematic signatures differ from model to model. We pay special attention to the barlens model. We show that orbits assembled into barlens are not responsible for the kinematic signatures of B/PS bulges. The results presented in this work are applicable to the interpretation of IFU observations of real galaxies.Comment: 18 page

    Barless flocculent galaxies: a dynamic puzzle

    Full text link
    We draw attention to the bright galaxies that do not show a bar in their structure but have a flocculent spiral structure. Using the THINGS' and HERACLES' kinematic data for four barless galaxies (NGC~2841, NGC~3512, NGC~5055, NGC~7331) we built their mass models including dark halos. We concluded that the fraction of the dark matter does not exceed 50\% within the optical radii of the galaxies. This is too little to explain the lack of a bar in these galaxies. In an attempt to understand the featureless structure of these galaxies we constructed several NN-body models with an initially reduced content of dark matter. We concluded that, in addition to the low mass of the dark halo, the decisive factor that leads to a barless disc is the start from an initially unstable state. An isolated dynamically cold disc (with the Toomre parameter Q<0.5Q < 0.5) settled into rotational equilibrium passes trough the short stage of violent instability with fragmentation and formation of stellar clumps. After that, it evolves passively and ends up with a featureless structure. We assume that the barless flocculent galaxies studied in the present work may be descendants of galaxies at high redshifts with rotation curves which are consistent with the high mass fraction of baryons relative to the total dark matter halo.Comment: 18 page

    The role of endoscopic ultrasonography in the differential diagnosis of biliary obstructions

    Get PDF
    Dispensarul Oncologic Regional, Secţia Endoscopie, St.Petersburg, Rusia, 2 IMSP SR ACSR, Secţia endoscopie şi chirurgie miniinvazivă Chişinău, Republica Moldova, Al XII-lea Congres al Asociației Chirurgilor „Nicolae Anestiadi” din Republica Moldova cu participare internațională 23-25 septembrie 2015Introducere: Tehnologiile moderne modifică tot mai semnificativ evaluarea diagnostică a pacienților cu obstrucțiile biliare. Aplicarea UltraSonografiei Endoscopice (USEnd) este una dintre metodele de ultimă oră în depistarea diferitor maladii, ce contribuie la obstrucţii biliare. Scopul: Cercetarea actuală a fost orientată spre aprecierea rolului USEnd în diagnosticarea patologiilor ce pot provoca dezvoltarea obstrucţiilor biliare. Rezultate: Au fost studiate fişele de examinare a 42 pacienţi evaluați prin USEnd din evidenţa Dispensarului Oncologic Regional din St.Petersburg. Concluzie: USEnd, este o metodă promiţătoare de diagnostic diferenţial în optimizarea algoritmului managementului obstrucţiilor biliare.Introduction: The emergent imaging technologies increasingly modify the diagnostic evaluation of the patients with biliary obstructions. One of the recently investigated improvements pertains to the use of Endoscopic Ultrasonography (USEnd) in the hepatobiliary imaging. Aim: This study is oriented towards the appreciation of the role of USEnd in the diagnosis of the pathologies pertaining to biliary obstruction. Results: The results obtained at the St.Petersburg Regional Oncologic Dispensary after the application of USEnd for 42 patients were analysed. Conclusion: The possibilities of USEnd in the differential diagnosis for patients with biliary obstructions may optimize the diagnosis and treatment algorithms

    Pulse dynamics in SESAM-free electrically pumped VECSEL

    Get PDF
    Self-starting pulsed operation in an electrically pumped (EP) vertical-external-cavity surface-emitting-laser (VECSEL) without intracavity saturable absorber is demonstrated. A linear hemispherical cavity design, consisting of the EP-VECSEL chip and a 10% output-coupler, is used to obtain picosecond output pulses with energies of 2.8 pJ and pulse widths of 130 ps at a repetition rate of 1.97 GHz. A complete experimental analysis of the generated output pulse train and of the transition from continuous-wave to pulsed operation is presented. Numerical simulations based on a delay-differential-equation (DDE) model of mode-locked semiconductor lasers are used to reproduce the pulse dynamics and identify different laser operation regimes. From this, the measured single pulse operation is attributed to FM-type mode-locking. The pulse formation is explained by strong amplitude-phase coupling and spectral filtering inside the EP-VECSEL

    Conformal mechanics inspired by extremal black holes in d=4

    Full text link
    A canonical transformation which relates the model of a massive relativistic particle moving near the horizon of an extremal black hole in four dimensions and the conventional conformal mechanics is constructed in two different ways. The first approach makes use of the action-angle variables in the angular sector. The second scheme relies upon integrability of the system in the sense of Liouville.Comment: V2: presentation improved, new material and references added; the version to appear in JHE
    corecore