70 research outputs found
QCD and electroweak interference in Higgs production by gauge boson fusion
We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects
Testing Gluino Spin with Three-Body Decays
We examine the possibility of distinguishing a supersymmetric gluino from a
Kaluza-Klein gluon of universal extra dimensions (UED) at the Large Hadron
Collider (LHC). We focus on the case when all kinematically allowed tree-level
decays of this particle are 3-body decays into two jets and a massive daughter
(typically weak gaugino or Kaluza-Klein weak gauge boson). We show that the
shapes of the dijet invariant mass distributions differ significantly in the
two models, as long as the mass of the decaying particle mA is substantially
larger than the mass of the massive daughter mB. We present a simple analysis
estimating the number of events needed to distinguish between the two models
under idealized conditions. For example, for mA/mB=10, we find the required
number of events to be of order several thousand, which should be available at
the LHC within a few years. This conclusion is confirmed by a parton level
Monte Carlo study which includes the effects of experimental cuts and the
combinatoric background.Comment: 19 pages, 10 figure
Probing Supersymmetry With Third-Generation Cascade Decays
The chiral structure of supersymmetric particle couplings involving third
generation Standard Model fermions depends on left-right squark and slepton
mixings as well as gaugino-higgsino mixings. The shapes and intercorrelations
of invariant mass distributions of a first or second generation lepton with
bottoms and taus arising from adjacent branches of SUSY cascade decays are
shown to be a sensitive probe of this chiral structure. All possible cascade
decays that can give rise to such correlations within the MSSM are considered.
For bottom-lepton correlations the distinctive structure of the invariant mass
distributions distinguishes between decays originating from stop or sbottom
squarks through either an intermediate chargino or neutralino. For decay
through a chargino the spins of the stop and chargino are established by the
form of the distribution. When the bottom charge is signed through soft muon
tagging, the structure of the same-sign and opposite-sign invariant mass
distributions depends on a set function of left-right and gaugino-higgsino
mixings, as well as establishes the spins of all the superpartners in the
sequential two-body cascade decay. Tau-lepton and tau-tau invariant mass
distributions arising from MSSM cascade decays are likewise systematically
considered with particular attention to their dependence on tau polarization.
All possible tau-lepton and tau-tau distributions are plotted using a
semi-analytic model for hadronic one-prong taus. Algorithms for fitting tau-tau
and tau-lepton distributions to data are suggested.Comment: 35 pages, 17 .eps figure
Invariant mass distributions in cascade decays
We derive analytical expressions for the shape of the invariant mass
distributions of massless Standard Model endproducts in cascade decays
involving massive New Physics (NP) particles, D -> Cc -> Bbc -> Aabc, where the
final NP particle A in the cascade is unobserved and where two of the particles
a, b, c may be indistinguishable. Knowledge of these expressions can improve
the determination of NP parameters at the LHC. The shape formulas are
composite, but contain nothing more complicated than logarithms of simple
expressions. We study the effects of cuts, final state radiation and detector
effects on the distributions through Monte Carlo simulations, using a
supersymmetric model as an example. We also consider how one can deal with the
width of NP particles and with combinatorics from the misidentification of
final state particles. The possible mismeasurements of NP masses through `feet'
in the distributions are discussed. Finally, we demonstrate how the effects of
different spin configurations can be included in the distributions.Comment: 39 pages, 14 figures (colour), JHEP clas
Spin Measurements in Cascade Decays at the LHC
We systematically study the possibility of determining the spin of new
particles after their discovery at the LHC. We concentrate on angular
correlations in cascade decays. Motivated by constraints of electroweak
precision tests and the potential of providing a Cold Dark Matter candidate, we
focus on scenarios of new physics in which some discrete symmetry guarantees
the existence of stable neutral particles which escape the detector. More
specifically, we compare supersymmetry with another generic scenario in which
new physics particles have the same spin as their Standard Model partners. A
survey of possibilities of observing spin correlations in a broad range of
decay channels is carried out, with interesting ones identified. Rather than
confining ourselves to one "collider friendly" benchmark point (such as SPS1a),
we describe the parameter region in which any particular decay channel is
effective. We conduct a more detailed study of chargino's spin determination in
the decay channel . A scan
over the chargino and neutralino masses is performed. We find that as long as
the spectrum is not too degenerate the prospects for spin determination in this
channel are rather good.Comment: 36 pages, references added, 1 figure modifie
Leptons and photons at the LHC: cascades through spinless adjoints
We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along
two universal extra dimensions compactified on the chiral square. Cascade
decays of spinless adjoints proceed through tree-level 3-body decays involving
leptons as well as one-loop 2-body decays involving photons. As a result,
spectacular events with as many as six charged leptons, or one photon plus four
charged leptons are expected to be observed at the LHC. Unusual events with
relatively large branching fractions include three leptons of same charge plus
one lepton of opposite charge, or one photon plus two leptons of same charge.
We estimate the current limit from the Tevatron on the compactification scale,
set by searches for trilepton events, to be around 270 GeV.Comment: 33+1 pages, 14 figure
Precise Calculation of the Relic Density of Kaluza-Klein Dark Matter in Universal Extra Dimensions
We revisit the calculation of the relic density of the lightest Kaluza-Klein
particle (LKP) in the model of Universal Extra Dimensions. The Kaluza-Klein
(KK) particle spectrum at level one is rather degenerate, and various
coannihilation processes may be relevant. We extend the calculation of
hep-ph/0206071 to include coannihilation processes with all level one KK
particles. In our computation we consider a most general KK particle spectrum,
without any simplifying assumptions. In particular, we do not assume a
completely degenerate KK spectrum and instead retain the dependence on each
individual KK mass. As an application of our results, we calculate the
Kaluza-Klein relic density in the Minimal UED model, turning on coannihilations
with all level one KK particles. We then go beyond the minimal model and
discuss the size of the coannihilation effects separately for each class of
level 1 KK particles. Our results provide the basis for consistent relic
density computations in arbitrarily general models with Universal Extra
Dimenions.Comment: 44 pages, 19 figures, typeset in JHEP styl
Supersymmetry and the LHC Inverse Problem
Given experimental evidence at the LHC for physics beyond the standard model,
how can we determine the nature of the underlying theory? We initiate an
approach to studying the "inverse map" from the space of LHC signatures to the
parameter space of theoretical models within the context of low-energy
supersymmetry, using 1808 LHC observables including essentially all those
suggested in the literature and a 15 dimensional parametrization of the
supersymmetric standard model. We show that the inverse map of a point in
signature space consists of a number of isolated islands in parameter space,
indicating the existence of "degeneracies"--qualitatively different models with
the same LHC signatures. The degeneracies have simple physical
characterizations, largely reflecting discrete ambiguities in electroweak-ino
spectrum, accompanied by small adjustments for the remaining soft parameters.
The number of degeneracies falls in the range 1<d<100, depending on whether or
not sleptons are copiously produced in cascade decays. This number is large
enough to represent a clear challenge but small enough to encourage looking for
new observables that can further break the degeneracies and determine at the
LHC most of the SUSY physics we care about. Degeneracies occur because
signatures are not independent, and our approach allows testing of any new
signature for its independence. Our methods can also be applied to any other
theory of physics beyond the standard model, allowing one to study how model
footprints differ in signature space and to test ways of distinguishing
qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure
A Collider Signature of the Supersymmetric Golden Region
Null results of experimental searches for the Higgs boson and the
superpartners imply a certain amount of fine-tuning in the electroweak sector
of the Minimal Supersymmetric Standard Model (MSSM). The "golden region" in the
MSSM parameter space is the region where the experimental constraints are
satisfied and the amount of fine-tuning is minimized. In this region, the stop
trilinear soft term is large, leading to a significant mass splitting between
the two stop mass eigenstates. As a result, the decay of the heavier stop into
the lighter stop and a Z boson is kinematically allowed throughout the golden
region. We propose that the experiments at the Large Hadron Collider (LHC) can
search for this decay through an inclusive signature, Z+2jb+missing Et+X. We
evaluate the Standard Model backgrounds for this channel, and identify a set of
cuts that would allow detection of the supersymmetric contribution at the LHC
for the MSSM parameters typical of the golden region. We also discuss other
possible interpretations of a signal for new physics in the Z+2jb+missing Et+X
channel, and suggest further measurements that could be used to distinguish
among these interpretations.Comment: 23 pages, 5 figures. New in v4: an error fixed in Eq. (13); results
unaffecte
Spin Analysis of Supersymmetric Particles
The spin of supersymmetric particles can be determined at colliders
unambiguously. This is demonstrated for a characteristic set of non-colored
supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The
analysis is based on the threshold behavior of the excitation curves for pair
production in collisions, the angular distribution in the production
process and decay angular distributions. In the first step we present the
observables in the helicity formalism for the supersymmetric particles.
Subsequently we confront the results with corresponding analyses of
Kaluza-Klein particles in theories of universal extra space dimensions which
behave distinctly different from supersymmetric theories. It is shown in the
third step that a set of observables can be designed which signal the spin of
supersymmetric particles unambiguously without any model assumptions. Finally
in the fourth step it is demonstrated that the determination of the spin of
supersymmetric particles can be performed experimentally in practice at an
collider.Comment: 39 pages, 14 figure
- âŠ