23 research outputs found

    Expression Patterns and Correlations with Metabolic Markers of Zinc Transporters <i>ZIP14</i> and <i>ZNT1</i> in Obesity and Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is associated with infertility, increased androgen levels, and insulin resistance. In adipose tissue, zinc facilitates insulin signaling. Circulating zinc levels are altered in obesity, diabetes, and PCOS; and zinc supplementation can ameliorate metabolic disturbances in PCOS. In adipose tissue, expression of zinc influx transporter ZIP14 varies with body mass index (BMI), clinical markers of metabolic syndrome, and peroxisome proliferator-activated receptor gamma (PPARG). In this study, we investigated expression levels of ZIP14 and PPARG in subcutaneous adipose tissue of 36 PCOS women (17 lean and 19 obese women) compared with 23 healthy controls (7 lean and 16 obese women). Further, expression levels of zinc transporter ZIP9, a recently identified androgen receptor, and zinc efflux transporter ZNT1 were investigated, alongside lipid profile and markers of glucose metabolism [insulin degrading enzyme, retinol-binding protein 4 (RBP4), and glucose transporter 4 (GLUT4)]. We find that ZIP14 expression is reduced in obesity and positively correlates with PPARG expression, which is downregulated with increasing BMI. ZNT1 is upregulated in obesity, and both ZIP14 and ZNT1 expression significantly correlates with clinical markers of altered glucose metabolism. In addition, RBP4 and GLUT4 associate with obesity, but an association with PCOS as such was present only for PPARG and RBP4. ZIP14 and ZNT1 does not relate to clinical androgen status and ZIP9 is unaffected by all parameters investigated. In conclusion, our findings support the existence of a zinc dyshomeostasis in adipose tissue in metabolic disturbances including PCOS-related obesity

    SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress

    Get PDF
    BACKGROUND:Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. beta-cells depend on zinc for both insulin crystallization and regulation of cell mass. METHODOLOGY/PRINCIPAL FINDINGS:This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in beta-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a beta-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced beta-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. CONCLUSION/SIGNIFICANCE:Zinc transporting proteins in beta-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in beta-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment

    Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-cells are extremely rich in zinc and zinc homeostasis is regulated by zinc transporter proteins. β-cells are sensitive to cytokines, interleukin-1β (IL-1β) has been associated with β-cell dysfunction and -death in both type 1 and type 2 diabetes. This study explores the regulation of zinc transporters following cytokine exposure.</p> <p>Methods</p> <p>The effects of cytokines IL-1β, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on zinc transporter gene expression were measured in INS-1-cells and rat pancreatic islets. Being the more sensitive transporter, we further explored ZnT8 (Slc30A8): the effect of ZnT8 over expression on cytokine induced apoptosis was investigated as well as expression of the insulin gene and two apoptosis associated genes, BAX and BCL2.</p> <p>Results</p> <p>Our results showed a dynamic response of genes responsible for β-cell zinc homeostasis to cytokines: IL-1β down regulated a number of zinc-transporters, most strikingly ZnT8 in both islets and INS-1 cells. The effect was even more pronounced when mixing the cytokines. TNF-α had little effect on zinc transporter expression. IFN-γ down regulated a number of zinc transporters. Insulin expression was down regulated by all cytokines. ZnT8 over expressing cells were more sensitive to IL-1β induced apoptosis whereas no differences were observed with IFN-γ, TNF-α, or a mixture of cytokines.</p> <p>Conclusion</p> <p>The zinc transporting system in β-cells is influenced by the exposure to cytokines. Particularly ZnT8, which has been associated with the development of diabetes, seems to be cytokine sensitive.</p

    siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells

    No full text
    Zinc is essential for the crystallization of insulin in pancreatic β-cells and is thought to induce apoptosis in a dose-dependent manner, thereby regulating β-cell mass. Therefore, a tight intracellular regulation of Zn 2+ is required. The zinc-transporter family SLC30A is an important factor in the regulation of zinc homeostasis. The aim of this study was to examine the effect of the zinc transporters ZnT3 and ZnT8 on insulin metabolism and apoptosis. Both these proteins are present in pancreatic β-cells and have been linked to diabetes. The objective of our study was to perform a considerable siRNA-mediated knock-down of ZnT3 and ZnT8 in INS-1E cells, a pancreatic β-cell model, and afterwards examine the impact on cell viability and insulin metabolism. Increased levels of apoptosis were observed after knock-down of both ZnT3 and ZnT8. Insulin secretion was significantly reduced by ZnT3 knock-down, whereas knock-down of ZnT8 resulted in increased intracellular content of insulin accompanied by a relatively lowered secretion. Both zinc transporters in this way seem to play a role in β-cell survival and the ability of these cells to react appropriately to surrounding glucose concentrations. © 2010 The Authors. APMIS © 2010 APMIS.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    Additional file 1: of Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    No full text
    Primer sequences. Forward and reverse primer sequences are shown together with the annealing temperature. h, human primer; m, murine primer. In human adipose tissue, expression of the zinc transporter ZIP14 was investigated together with that of peroxisome proliferator-activated receptor γ isoform 1 (PPARγ1) and isoform 2 (PPARγ2). Low-density lipoprotein receptor-related protein 10 (LRP10) was used as a housekeeping gene. In 3T3-L1 cells, expression of the zinc transporter ZIP14 was investigated together with that of the adipocytic differentiation markers PPARγ and fatty-acid binding protein 4 (A-FABP). Cyclophilin A (Cyc-A), hypoxanthine guanine phosphoribosyl transferase (HPRT), and ubiquitin conjugase-7 (UBC-7) were used as housekeeping genes. (PDF 58 kb

    Influence of GLP-1 on Myocardial Glucose Metabolism in Healthy Men during Normo- or Hypoglycemia

    Get PDF
    <div><p>Background and Aims</p><p>Glucagon-like peptide-1 (GLP-1) may provide beneficial cardiovascular effects, possibly due to enhanced myocardial energetic efficiency by increasing myocardial glucose uptake (MGU). We assessed the effects of GLP-1 on MGU in healthy subjects during normo- and hypoglycemia.</p><p>Materials and Methods</p><p>We included eighteen healthy men in two randomized, double-blinded, placebo-controlled cross-over studies. MGU was assessed with GLP-1 or saline infusion during pituitary-pancreatic normo- (plasma glucose (PG): 4.5 mM, n = 10) and hypoglycemic clamps (PG: 3.0 mM, n = 8) by positron emission tomography with <sup>18</sup>fluoro-deoxy-glucose (<sup>18</sup>F-FDG) as tracer.</p><p>Results</p><p>In the normoglycemia study mean (± SD) age was 25±3 years, and BMI was 22.6±0.6 kg/m<sup>2</sup> and in the hypoglycemia study the mean age was 23±2 years with a mean body mass index of 23±2 kg/m<sup>2</sup>. GLP-1 did not change MGU during normoglycemia (mean (+/− SD) 0.15+/−0.04 and 0.16+/−0.03 µmol/g/min, P = 0.46) or during hypoglycemia (0.16+/−0.03 and 0.13+/−0.04 µmol/g/min, P = 0.14). However, the effect of GLP-1 on MGU was negatively correlated to baseline MGU both during normo- and hypoglycemia, (P = 0.006, r<sup>2</sup> = 0.64 and P = 0.018, r<sup>2</sup> = 0.64, respectively) and changes in MGU correlated positively with the level of insulin resistance (HOMA 2IR) during hypoglycemia, P = 0.04, r<sup>2</sup> = 0.54. GLP-1 mediated an increase in circulating glucagon levels at PG levels below 3.5 mM and increased glucose infusion rates during the hypoglycemia study. No differences in other circulating hormones or metabolites were found.</p><p>Conclusions</p><p>While GLP-1 does not affect overall MGU, GLP-1 induces changes in MGU dependent on baseline MGU such that GLP-1 increases MGU in subjects with low baseline MGU and decreases MGU in subjects with high baseline MGU. GLP-1 preserves MGU during hypoglycemia in insulin resistant subjects.</p><p>ClinicalTrials.gov registration numbers: <a href="http://clinicaltrials.gov/show/NCT00418288" target="_blank">NCT00418288:</a> (hypoglycemia) and <a href="http://clinicaltrials.gov/show/NCT00256256" target="_blank">NCT00256256:</a> (normoglycemia).</p></div

    Positron emission tomography.

    No full text
    <p>Myocardial glucose uptake (MGU) during normoglycemia and hypoglycemia (A and B). <sup>18</sup>F-FDG clearance (K) during normoglycemia and hypoglycemia (C and D). Relation between placebo MGU and change in MGU during GLP-1 infusion in the normoglycemia study (E), placebo MGU and change in MGU during GLP-1 infusion in the hypoglycemia study (F). Relation between placebo K and change in K during GLP-1 infusion in the normoglycemia study (G), placebo K and change in K during GLP-1 infusion in the hypoglycemia study (H). HOMA 2IR and the change of MGU during GLP-1 infusion in the hypoglycemia study (I). HOMA 2IR and the change of K during GLP-1 infusion in the hypoglycemia study (J). Data are mean ± SD. Regression lines with 95% confidence intervals.</p
    corecore