11 research outputs found

    UHECR Anisotropy from Luminous Infrared Galaxies - Predictions for the Pierre Auger Observatory

    Get PDF
    Abstract We consider the hypothesis that luminous infrared galaxies (LIRGs) are sources of the UHECRs. By associating the AGASA triplet with the Arp 299 galaxy we obtain reasonable values for Galactic and extragalactic magnetic fields. We predict what the southern sky, to be seen by the Auger experiment, should look like, so that the LIRG hypothesis could be verified soon

    Autoencoder Application for Anomaly Detection in Power Consumption of Lighting Systems

    No full text
    Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks for various configurations and training periods. The evaluation of the algorithms was carried out based on real data from an extensive lighting control system. A practical approach was proposed using real-time, unsupervised algorithms employing limited computing resources that can be implemented in industrial devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is possible to build a model so that the algorithm works correctly regardless of the season of the year

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    No full text
    International audienceWe report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10(18) eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10(−)(5) in the case of the angular power spectrum, and 2.5 × 10(−)(3) in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales

    Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

    No full text

    Search for photons with energies above 1018^{18} eV using the hybrid detector of the Pierre Auger Observatory

    No full text
    International audienceA search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1–2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km(−)(2) sr(−)(1) yr(−)(1) are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models − in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles − and challenge the most recent super-heavy dark matter models

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    No full text

    Number of Hajj Pilgrims Departured(1) to the Holyland of Mecca by Province, 2012–2015

    Full text link
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max, sensitive to the mass composition of cosmic rays above 3×1018 eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (secθ)max

    Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    No full text
    corecore