1,684 research outputs found
Pharmacokinetic models for propofol-defining and illuminating the devil in the detail
The recently introduced open-target-controlled infusion (TCI) systems can be programmed with any pharmacokinetic model, and allow either plasma- or effect-site targeting. With effect-site targeting the goal is to achieve a user-defined target effect-site concentration as rapidly as possible, by manipulating the plasma concentration around the target. Currently systems are pre-programmed with the Marsh and Schnider pharmacokinetic models for propofol. The former is an adapted version of the Gepts model, in which the rate constants are fixed, whereas compartment volumes and clearances are weight proportional. The Schnider model was developed during combined pharmacokinetic-pharmacodynamic modelling studies. It has fixed values for V1, V3, k(13), and k(31), adjusts V2, k(12), and k(21) for age, and adjusts k(10) according to total weight, lean body mass (LBM), and height. In plasma targeting mode, the small, fixed V1 results in very small initial doses on starting the system or on increasing the target concentration in comparison with the Marsh model. The Schnider model should thus always be used in effect-site targeting mode, in which larger initial doses are administered, albeit still smaller than for the Marsh model. Users of the Schnider model should be aware that in the morbidly obese the LBM equation can generate paradoxical values resulting in excessive increases in maintenance infusion rates. Finally, the two currently available open TCI systems implement different methods of effect-site targeting for the Schnider model, and in a small subset of patients the induction doses generated by the two methods can differ significantly
Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima
High mobility two-dimensional electron systems exhibit vanishing resistance
over broad magnetic field intervals upon excitation with microwaves, with a
characteristic reduction of the resistance with increasing radiation intensity
at the resistance minima. Here, we report experimental results examining the
voltage - current characteristics, and the resistance at the minima vs. the
microwave power. The findings indicate that a non-linear V-I curve in the
absence of microwave excitation becomes linearized under irradiation, unlike
expectations, and they suggest a similarity between the roles of the radiation
intensity and the inverse temperature.Comment: 3 color figures; publishe
The microscopic nature of localization in the quantum Hall effect
The quantum Hall effect arises from the interplay between localized and
extended states that form when electrons, confined to two dimensions, are
subject to a perpendicular magnetic field. The effect involves exact
quantization of all the electronic transport properties due to particle
localization. In the conventional theory of the quantum Hall effect,
strong-field localization is associated with a single-particle drift motion of
electrons along contours of constant disorder potential. Transport experiments
that probe the extended states in the transition regions between quantum Hall
phases have been used to test both the theory and its implications for quantum
Hall phase transitions. Although several experiments on highly disordered
samples have affirmed the validity of the single-particle picture, other
experiments and some recent theories have found deviations from the predicted
universal behaviour. Here we use a scanning single-electron transistor to probe
the individual localized states, which we find to be strikingly different from
the predictions of single-particle theory. The states are mainly determined by
Coulomb interactions, and appear only when quantization of kinetic energy
limits the screening ability of electrons. We conclude that the quantum Hall
effect has a greater diversity of regimes and phase transitions than predicted
by the single-particle framework. Our experiments suggest a unified picture of
localization in which the single-particle model is valid only in the limit of
strong disorder
Classification of Higher Dimensional Spacetimes
We algebraically classify some higher dimensional spacetimes, including a
number of vacuum solutions of the Einstein field equations which can represent
higher dimensional black holes. We discuss some consequences of this work.Comment: 16 pages, 1 Tabl
The Cyclotron Spin-Flip Mode as the Lowest-Energy Excitation of Unpolarized Integer Quantum Hall States
The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states
() have been studied with inelastic light scattering. The energy of
these modes is significantly smaller compared to the bare cyclotron gap. Second
order exchange corrections are held responsible for a negative energy
contribution and render these modes the lowest energy excitations of
unpolarized integer quantum Hall states.Comment: Published: Phys. Rev. B 72, 073304 (2005
Electrical Transport in High Quality Graphene pnp Junctions
We fabricate and investigate high quality graphene devices with contactless,
suspended top gates, and demonstrate formation of graphene pnp junctions with
tunable polarity and doping levels. The device resistance displays distinct
oscillations in the npn regime, arising from the Fabry-Perot interference of
holes between the two pn interfaces. At high magnetic fields, we observe
well-defined quantum Hall plateaus, which can be satisfactorily fit to
theoretical calculations based on the aspect ratio of the device.Comment: to appear in a special focus issue in New Journal of Physic
Microwave photoresponse in the 2D electron system caused by intra-Landau level transitions
The influence of microwave radiation on the DC-magnetoresistance of
2D-electrons is studied in the regime beyond the recently discovered zero
resistance states when the cyclotron frequency exceeds the radiation frequency.
Radiation below 30 GHz causes a strong suppression of the resistance over a
wide magnetic field range, whereas higher frequencies produce a non-monotonic
behavior in the damping of the Shubnikov-de Haas oscillations. These
observations are explained by the creation of a non-equilibrium electron
distribution function by microwave induced intra-Landau level transitions.Comment: 4 pages, 5 figure
How branching can change the conductance of ballistic semiconductor devices
We demonstrate that branching of the electron flow in semiconductor
nanostructures can strongly affect macroscopic transport quantities and can
significantly change their dependence on external parameters compared to the
ideal ballistic case even when the system size is much smaller than the mean
free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs
two-dimensional electron gas we observe a splitting of the commensurability
peaks in the magnetoresistance curve. We show that a model which includes a
random disorder potential of the two-dimensional electron gas can account for
the random splitting of the peaks that result from the collimation of the
electron beam. The shape of the splitting depends on the particular realization
of the disorder potential. At the same time magnetic focusing peaks are largely
unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.
- …