141 research outputs found
Spectral singularities in PT-symmetric periodic finite-gap systems
The origin of spectral singularities in finite-gap singly periodic
PT-symmetric quantum systems is investigated. We show that they emerge from a
limit of band-edge states in a doubly periodic finite gap system when the
imaginary period tends to infinity. In this limit, the energy gaps are
contracted and disappear, every pair of band states of the same periodicity at
the edges of a gap coalesces and transforms into a singlet state in the
continuum. As a result, these spectral singularities turn out to be analogous
to those in the non-periodic systems, where they appear as zero-width
resonances. Under the change of topology from a non-compact into a compact one,
spectral singularities in the class of periodic systems we study are
transformed into exceptional points. The specific degeneration related to the
presence of finite number of spectral singularities and exceptional points is
shown to be coherently reflected by a hidden, bosonized nonlinear
supersymmetry.Comment: 16 pages, 3 figures; a difference between spectral singularities and
exceptional points specified, the version to appear in PR
Quantum Mechanics of Proca Fields
We construct the most general physically admissible positive-definite inner
product on the space of Proca fields. Up to a trivial scaling this defines a
five-parameter family of Lorentz invariant inner products that we use to
construct a genuine Hilbert space for the quantum mechanics of Proca fields. If
we identify the generator of time-translations with the Hamiltonian, we obtain
a unitary quantum system that describes first-quantized Proca fields and does
not involve the conventional restriction to the positive-frequency fields. We
provide a rather comprehensive analysis of this system. In particular, we
examine the conserved current density responsible for the conservation of the
probabilities, explore the global gauge symmetry underlying the conservation of
the probabilities, obtain a probability current density, construct position,
momentum, helicity, spin, and angular momentum operators, and determine the
localized Proca fields. We also compute the generalized parity (\cP),
generalized time-reversal (\cT), and generalized charge or chirality (\cC)
operators for this system and offer a physical interpretation for its
\cP\cT-, \cC-, and \cC\cP\cT-symmetries.Comment: Published version, typos fixed, a change in symbol, 1 fi
Separable potential model for interactions at low energies
The effective separable meson-baryon potentials are constructed to match the
equivalent chiral amplitudes up to the second order in external meson momenta.
We fit the model parameters (low energy constants) to the threshold and low
energy data. In the process, the -proton bound state problem is
solved exactly in the momentum space and the 1s level characteristics of the
kaonic hydrogen are computed simultaneously with the available low energy
cross sections. The model is also used to describe the
mass spectrum and the energy dependence of the amplitude.Comment: 31 pages, v2 - added corrections to make it compatible with the
published versio
Big Data in Agriculture – From FOODIE towards data bio
What’s the role of Big Data in the farming ecosystem? Farmers need to measure and understand the impact of a huge amount and variety of data which drive overall quality and yield of their fields. Among those are local weather data, GPS data, ortophotos, satellite imagery, soil specifics, soil conductivity, seed, fertilizer and crop protectant specifications and many more. Being able to leverage this data for running long and short term simulations in response to “events” like changed weather, market need or other parameters is indispensable for farmers in terms of maximizing their profits. IoT (Internet of Technology) including field sensors and machinery monitoring. The experimentation in FarmTelemetry project demonstrates that one average Czech farm (i.e. around 1’000 hectares) could generate daily 20 MegaBytes of data. This could be only for Czech Republic something between 30 and 50 GB per one day. We may easily reach Terabytes of data a day from agricultural basic monitoring by sensors in Europe. Together with satellite data agriculture will need to manage extremely large amount of data. On one side there is growing whole ecosystem with a strong need to secure Big Data from different repositories and heterogeneous sources. In some cases, sharing of data could be common interest, but on other side, there are also different interests and data could help to one part of value chain to take bigger part of profit. From this reason Big data are sensitive topics and trusting of producers about data security is essential. The producers of seeds and chemicals want to maximize their business with farmers. Our team stated implementation of Big Data technologies in frame of European 7FP project FOODIE. This work currently the work continue as part of DataBio project
Polarized photons in radiative muon capture
We discuss the measurement of polarized photons arising from radiative muon
capture. The spectrum of left circularly polarized photons or equivalently the
circular polarization of the photons emitted in radiative muon capture on
hydrogen is quite sensitive to the strength of the induced pseudoscalar
coupling constant . A measurement of either of these quantities, although
very difficult, might be sufficient to resolve the present puzzle resulting
from the disagreement between the theoretical prediction for and the
results of a recent experiment. This sensitivity results from the absence of
left-handed radiation from the muon line and from the fact that the leading
parts of the radiation from the hadronic lines, as determined from the chiral
power counting rules of heavy-baryon chiral perturbation theory, all contain
pion poles.Comment: 10 pages, 6 figure
The Axial-Vector Current in Nuclear Many-Body Physics
Weak-interaction currents are studied in a recently proposed effective field
theory of the nuclear many-body problem. The Lorentz-invariant effective field
theory contains nucleons, pions, isoscalar scalar () and vector
() fields, and isovector vector () fields. The theory exhibits a
nonlinear realization of chiral symmetry and has three
desirable features: it uses the same degrees of freedom to describe the
axial-vector current and the strong-interaction dynamics, it satisfies the
symmetries of the underlying theory of quantum chromodynamics, and its
parameters can be calibrated using strong-interaction phenomena, like hadron
scattering or the empirical properties of finite nuclei. Moreover, it has
recently been verified that for normal nuclear systems, it is possible to
systematically expand the effective lagrangian in powers of the meson fields
(and their derivatives) and to reliably truncate the expansion after the first
few orders. Here it is shown that the expressions for the axial-vector current,
evaluated through the first few orders in the field expansion, satisfy both
PCAC and the Goldberger--Treiman relation, and it is verified that the
corresponding vector and axial-vector charges satisfy the familiar chiral
charge algebra. Explicit results are derived for the Lorentz-covariant,
axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange
currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty,
revtex4.cls, plus 14 figures; two sentences added in Summary; two references
adde
Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO
Altermagnets are an emerging third elementary class of magnets. Unlike
ferromagnets, their distinct crystal symmetries inhibit magnetization while,
unlike antiferromagnets, they promote strong spin polarization in the band
structure. The corresponding unconventional mechanism of timereversal symmetry
breaking without magnetization in the electronic spectra has been regarded as a
primary signature of altermagnetism, but has not been experimentally visualized
to date. We directly observe strong time-reversal symmetry breaking in the band
structure of altermagnetic RuO by detecting magnetic circular dichroism in
angle-resolved photoemission spectra. Our experimental results, supported by ab
initio calculations, establish the microscopic electronic-structure basis for a
family of novel phenomena and functionalities in fields ranging from
topological matter to spintronics, that are based on the unconventional
time-reversal symmetry breaking in altermagnets
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Band structure of CuMnAs probed by optical and photoemission spectroscopy
5 pages, 5 figures + Supplementary InformationTetragonal phase of CuMnAs progressively appears as one of the key materials
for antiferromagnetic spintronics due to efficient current-induced spin-orbit
torques whose existence can be directly inferred from crystal symmetry.
Theoretical understanding of spintronic phenomena in this material, however,
relies on the detailed knowledge of electronic structure (band structure and
corresponding wave functions) which has so far been tested only to a limited
extent. We show that AC permittivity (obtained from ellipsometry) and UV
photoelectron spectra agree with density functional calculations. Together with
the x-ray diffraction and precession electron diffraction tomography, our
analysis confirms recent theoretical claim [Phys.Rev.B 96, 094406 (2017)] that
copper atoms occupy lattice positions in the basal plane of the tetragonal unit
cell.We acknowledge support from National Grid Infrastructure MetaCentrum provided under the programme “Projects
of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042); Grant Agency of the
Czech Republic under Grant No. 15-13436S; CEDAMNF
(CZ.02.1.01/0.0/0.0/15_003/0000358) of the Czech ministry
of education (MŠMT) as well as its LM2015087 and LNSMLNSpin grants; Cariplo Foundation, Grant No. 2013-0726
(MAGISTER); Spanish MINECO under MAT2015-67593-P
project and the ‘Severo Ochoa’ Programme (SEV-2015-0496);
EU FET Open RIA Grant No. 766566; Engineering and
Physical Sciences Research Council Grant No. EP/P019749/1.
P.W. acknowledges support from the Royal Society through a
University Research Fellowship.Peer reviewe
- …